
TR2007-605, Dartmouth College, Computer Science

Video Stabilization and Enhancement

Hany Farid and Jeffrey B. Woodward
Department of Computer Science

Dartmouth College
Hanover NH 03755

Abstract

We describe a simple and computationally efficient approach for video stabilization and
enhancement. By combining multiple low-quality video frames, it is possible to extract
a high-quality still image. This technique is particularly helpful in identifying people,
license plates, etc. from low-quality video surveillance cameras.

1

1 Introduction

The poor image quality of many video surveillance cameras effectively renders them useless for the
purposes of identifying a person, a license plate, etc. Under certain conditions, however, it may be
possible to combine multiple video frames for such identification tasks. To this end, we describe a
simple and computationally efficient technique for video stabilization and enhancement. The efficacy
of this technique is shown on synthetic and real video sequences.

2 Video Stabilization

The goal of video stabilization is to create a new video sequence where the motion between frames
(or parts of a frame) has effectively been removed. To this end, differential motion estimation has
proven highly effective at computing inter-frame motion [3, 2, 5]. We describe one such approach
and then describe how a full video sequence is stabilized.

We begin by modeling the motion between two sequential frames, f(x, y, t) and f(x, y, t− 1) with
a 6-parameter affine transform:

f(x, y, t) = f(m1x + m2y + m5,m3x + m4y + m6, t− 1), (1)

where m1, m2, m3, m4 form the 2 × 2 affine matrix A and m5 and m6 the translation vector ~T given
by:

A =
(

m1 m2

m3 m4

)
and ~T =

(
m5

m6

)
. (2)

With relatively few parameters, the affine model captures a sufficiently rich range of motions such
as translation, scale, and rotation. The basic framework described here can easily be extended to
accommodate higher-order polynomial models that capture a richer set of motions (or even a lower-
order model that models the inter-frame motion with only a translation). In order to estimate the
affine parameters, we define the following quadratic error function to be minimized:

E(~m) =
∑

x,y∈Ω

[f(x, y, t)− f(m1x + m2y + m5,m3x + m4y + m6, t− 1)]2, (3)

where ~mT = (m1 . . . m6) and where Ω denotes a user specified ROI. Since this error function is
non-linear in its unknowns, it cannot be minimized analytically. To simplify the minimization, we
approximate this error function using a first-order truncated Taylor series expansion:

E(~m) ≈
∑

x,y∈Ω

[f − (f + (m1x + m2y + m5 − x)fx − (m3x + m4y + m6 − y)fy − ft)]2

=
∑

x,y∈Ω

[ft − (m1x + m2y + m5 − x)fx − (m3x + m4y + m6 − y)fy]2

=
∑

x,y∈Ω

[
k − ~cT ~m

]2
, (4)

where, for notational convenience, the spatial/temporal parameters are dropped, and where the
scalar k and vector ~c are given as:

k = ft + xfx + yfy (5)
~cT = (xfx yfx xfy yfy fx fy) . (6)

2

The quadratic error function is now linear in its unknowns, ~m, and can therefore be minimized ana-
lytically by differentiating with respect to ~m:

dE(~m)
d~m

=
∑
Ω

2~c
[
k − ~cT ~m

]
, (7)

setting the result equal to zero, and solving for ~m to yield:

~m =

[∑
Ω

~c~cT

]−1 [∑
Ω

~ck

]
. (8)

This solution assumes that the first term, a 6× 6 matrix, is invertible. This can usually be guaranteed
by integrating over a large enough ROI (Ω) with sufficient image content.

Central to the above motion estimation are the calculation of the spatial/temporal derivatives.
Given a pair of frames f(x, y, t) and f(x, y, t− 1), these derivatives are computed as follows:

fx(x, y, t) = (0.5f(x, y, t) + 0.5f(x, y, t− 1)) ? d(x) ? p(y) (9)
fy(x, y, t) = (0.5f(x, y, t) + 0.5f(x, y, t− 1)) ? p(x) ? d(y) (10)
ft(x, y, t) = (0.5f(x, y, t)− 0.5f(x, y, t− 1)) ? p(x) ? p(y), (11)

where ? denotes the convolution operator, and d(·) and p(·) are 1-D separable filters:

d(x) = (0.5 −0.5) and p(x) = (0.5 0.5) , (12)

and where p(y) and d(y) are the same filters oriented vertically instead of horizontally.
The required spatial/temporal derivatives have finite support thus fundamentally limiting the

amount of motion that can be estimated. A coarse-to-fine scheme is adopted in order to contend with
larger motions [4, 1]. A L-level Gaussian pyramid is built for each frame, f(x, y, t) and f(x, y, t− 1).
The motion estimated at pyramid level l is used to warp the frame at the next higher level l − 1,
until the finest level of the pyramid is reached (the full resolution frame at l = 1). In so doing, large
motions are estimated at the coarse levels, and are iteratively refined through the pyramid levels.
The repeated warping through the pyramid levels can introduce significant blurring and therefore
adversely effect the motion estimation at the higher pyramid levels. This can be avoided by always
operating on the original frame. Specifically, if the estimated motion at pyramid level l is m1, m2,
m3, m4, m5, and m6, then the original frame should be warped with the affine matrix A and the
translation vector ~T given by:

A =
(

m1 m2

m3 m4

)
and ~T =

(
2l−1m5

2l−1m6

)
. (13)

As we work through each level of the pyramid, the original frame will have to be repeatedly warped
according to the motion estimates at each pyramid level. These individual warps can be accumulated
so that the original frame need only undergo one warp. Specifically, two affine matrices A1 and A2

and corresponding translation vectors ~T1 and ~T2 are combined as follows:

A = A2A1 and ~T = A2
~T1 + ~T2, (14)

which is equivalent to applying A1 and ~T1 followed by A2 and ~T2. The warped original frame is then
decomposed into the next required pyramid level, and the process repeated through all pyramid
levels.

3

Figure 1: Three of one hundred simulated video sequences undergoing a global affine transformation
(every other frame of the 11-frame sequence is shown).

To this point, we have described how to estimate the inter-frame motion between two frames.
For a video sequence f(x, y, t), t ∈ [1, N], the inter-frame motion is computed between all pairs of
neighboring frames, f(x, y, t) and f(x, y, t − 1), for t ∈ [2, N] to yield motion estimates ~mt. With the
ROI (Ω in Equation (8)) specified on the first frame, the ROI must be warped on each successive frame
to account for the underlying motion between frames. The ROI at time t (t > 2) is therefore simply
warped according to the previous frame’s estimated motion. With the motion estimated between
all pairs of neighboring frames, each frame is warped to align with the last frame of the sequence.
Successive warps are combined according to Equation (14). See Appendix A for a complete Matlab
implementation of this video stabilization algorithm.

3 Video Enhancement

Once stabilized, the video sequence is combined to yield a single high quality image. We assume that
the corrupting noise on each video frame is identically and independently drawn (iid) from a zero-
mean distribution. Under this assumption a temporal mean or median filter is the optimal approach
to removing the noise – the temporal mean minimizes the L2 norm and the temporal median mini-
mizes the L1 norm between the true and estimated value at each pixel. Specifically, denote f(x, y, t),
t ∈ [1, N] as the original video sequence, and f̂(x, y, t) as the stabilized video. The enhanced frame
is estimated by simply computing a pixel-wise mean or median across f̂(x, y, t). Although typically
comparable, one temporal filter may give better results than the other depending on the specific noise
characteristics. See Appendix B for a Matlab implementation.

4

Figure 2: Shown is (a) the average misalignment in pixels as a function of signal to noise ratio (SNR);
and (b) the signal to noise ratio of the enhanced image (the red dashed curve denotes the results of the
temporal mean filter, and blue solid curve denotes the results of the temporal median filter).

4 Results

To test the efficacy of the video stabilization algorithm, simulated video sequences were generated
as follows. The first frame was a 256 × 256 central crop of a grayscale image. The motion between
frames followed the affine model, Equation (2), where the affine and translation parameters were
randomly generated to yield an average 2-pixel displacement between successive frames. Shown
in Figure 1 are three examples of 11-frame sequences (only every other frame is shown). The ROI
was a central 240 × 240 region. One hundred sequences were generated and stabilized. Prior to
stabilization, the average frame to frame displacement was 2.0 pixels. After stabilization, the average
pixel displacement was 0.02 pixels. Visually, little to no motion could be seen in the stabilized video.

Since we are interested in enhancing noisy video, it is natural to test the efficacy of the stabilization
in the face of noise. Random zero-mean Gaussian noise, with varying signal to noise ratio (SNR), was
added to each frame of a video sequence prior to stabilization. The same one hundred sequences
as described above were stabilized. Shown in Figure 2(a) is the average pixel displacement after
stabilization as a function of SNR, and shown in Figure 2(b) is the signal to noise ratio of the enhanced
frame. Note that even at very high levels of noise, the stabilization is effective to sub-pixel levels, and
the enhanced frame is of significantly higher signal to noise ratio relative to the original. Shown in
Figure 3 are three examples of the final enhanced frames.

And lastly, two real video sequences with complex motions were further corrupted with noise,
stabilized and enhanced. Shown in Figure 4 is one frame of the original video and the enhancement
results. In these examples, the motion estimation was applied to a grayscale version of each color
frame, and the stabilization and enhancement applied separately to each color channel. The ROI was
a rectangular region encompassing the license plate and face.

5

original noise mean median

Figure 3: Shown is an original frame, this frame plus noise (∼ 30 dB) and the results of stabilization
and temporal mean and median filtering.

5 Discussion

We have described a simple and computationally efficient technique for video stabilization and en-
hancement. The motion between video frames is modeled as a global affine transform whose pa-
rameters are estimated using standard differential motion techniques. A temporal mean or median
filter is then applied to this stabilized video to yield a single high quality frame. We have shown the
effectiveness of this technique on both synthetically generated and real video. This technique should
prove useful in enhancing the quality of low-grade video surveillance cameras.

6

original noise mean

Figure 4: Shown is an original frame, this frame plus noise and the results of stabilization and temporal
mean filter. Also shown is a magnified view of the license plate (top) and face (bottom).

7

6 Acknowledgments

This work was supported by a gift from Adobe Systems, Inc., a gift from Microsoft, Inc., a grant
from the United States Air Force (FA8750-06-C-0011), and by the Institute for Security Technology
Studies at Dartmouth College under grant 2005-DD-BX-1091 from the Bureau of Justice Assistance
and Award Number 2006-CS-001-000001 from the U.S. Department of Homeland Security. Points of
view or opinions in this document are those of the author and do not represent the official position
or policies of the U.S. Department of Justice, the U.S. Department of Homeland Security, or any other
sponsor.

References

[1] P. Anandan. A computational framework and an algorithm for the measurement of visual mo-
tion. International Journal of Computer Vision, 2(3):283–310, 1989.

[2] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow techniques. International
Journal of Computer Vision, 12(1):43–77, Feb. 1994.

[3] B.K.P. Horn. Robot Vision. MIT Press, Cambridge, MA, 1986.

[4] B.D. Lucas and T. Kanade. An iterative image registration technique with an application to stereo
vision. In International Joint Conference on Artificial Intelligence, pages 674–679, Vancouver, 1981.

[5] E.P. Simoncelli. Handbook of Computer Vision and Applications, chapter Bayesian Multi-scale Differ-
ential Optical Flow, pages 397–420. Academic Press, 1999.

8

Appendix A

Below is Matlab code for video stabilization. The function videostabilize takes as input: (1) a
data structure frames with field im that contains the original video sequence; (2) the number of
Gaussian pyramid levels L; and (3) a binary image roi that specifies the region of interest, with
value of 1 for those pixels to be considered in the motion estimation, and 0 otherwise. It is assumed
that each frame is a grayscale image. The output of this function is a data structure stable with
field im that contains the stabilized video sequence, and a data structure motion with fields A and T
that contain the estimated affine and translation parameters.

% ---
%%% STABILIZE VIDEO

function[motion, stable] = videostabilize(frames, roi, L)

N = length(frames);
roiorig = roi;

%%% ESTIMATE PAIRWISE MOTION
Acum = [1 0 ; 0 1];
Tcum = [0 ; 0];
stable(1).roi = roiorig;
for k = 1 : N-1

[A,T] = opticalflow(frames(k+1).im, frames(k).im, roi, L);
motion(k).A = A;
motion(k).T = T;
[Acum,Tcum] = accumulatewarp(Acum, Tcum, A, T);
roi = warp(roiorig, Acum, Tcum);

end

%%% STABILIZE TO LAST FRAME
stable(N).im = frames(N).im;
Acum = [1 0 ; 0 1];
Tcum = [0 ; 0];
for k = N-1 : -1 : 1

[Acum,Tcum] = accumulatewarp(Acum, Tcum, motion(k).A, motion(k).T);
stable(k).im = warp(frames(k).im, Acum, Tcum);

end
% ---
%%% ALIGN TWO FRAMES (f2 to f1)

function[Acum, Tcum] = opticalflow(f1, f2, roi, L)

f2orig = f2;
Acum = [1 0 ; 0 1];
Tcum = [0 ; 0];

for k = L : -1 : 0
%%% DOWN-SAMPLE
f1d = down(f1, k);
f2d = down(f2, k);
ROI = down(roi, k);

%%% COMPUTE MOTION
[Fx,Fy,Ft] = spacetimederiv(f1d, f2d);

9

[A,T] = computemotion(Fx, Fy, Ft, ROI);
T = (2ˆk) * T;
[Acum,Tcum] = accumulatewarp(Acum, Tcum, A, T);

%%% WARP ACCORDING TO ESTIMATED MOTION
f2 = warp(f2orig, Acum, Tcum);

end
% ---
%%% COMPUTE MOTION

function[A, T] = computemotion(fx, fy, ft, roi)

[ydim,xdim] = size(fx);
[x,y] = meshgrid([1:xdim]-xdim/2, [1:ydim]-ydim/2);

%%% TRIM EDGES
fx = fx(3:end-2, 3:end-2);
fy = fy(3:end-2, 3:end-2);
ft = ft(3:end-2, 3:end-2);
roi = roi(3:end-2, 3:end-2);
x = x(3:end-2, 3:end-2);
y = y(3:end-2, 3:end-2);

ind = find(roi > 0);
x = x(ind); y = y(ind);
fx = fx(ind); fy = fy(ind); ft = ft(ind);
xfx = x.*fx; xfy = x.*fy; yfx = y.*fx; yfy = y.*fy;

M(1,1) = sum(xfx .* xfx); M(1,2) = sum(xfx .* yfx); M(1,3) = sum(xfx .* xfy);
M(1,4) = sum(xfx .* yfy); M(1,5) = sum(xfx .* fx); M(1,6) = sum(xfx .* fy);
M(2,1) = M(1,2); M(2,2) = sum(yfx .* yfx); M(2,3) = sum(yfx .* xfy);
M(2,4) = sum(yfx .* yfy); M(2,5) = sum(yfx .* fx); M(2,6) = sum(yfx .* fy);
M(3,1) = M(1,3); M(3,2) = M(2,3); M(3,3) = sum(xfy .* xfy);
M(3,4) = sum(xfy .* yfy); M(3,5) = sum(xfy .* fx); M(3,6) = sum(xfy .* fy);
M(4,1) = M(1,4); M(4,2) = M(2,4); M(4,3) = M(3,4);
M(4,4) = sum(yfy .* yfy); M(4,5) = sum(yfy .* fx); M(4,6) = sum(yfy .* fy);
M(5,1) = M(1,5); M(5,2) = M(2,5); M(5,3) = M(3,5);
M(5,4) = M(4,5); M(5,5) = sum(fx .* fx); M(5,6) = sum(fx .* fy);
M(6,1) = M(1,6); M(6,2) = M(2,6); M(6,3) = M(3,6);
M(6,4) = M(4,6); M(6,5) = M(5,6); M(6,6) = sum(fy .* fy);

k = ft + xfx + yfy;
b(1) = sum(k .* xfx); b(2) = sum(k .* yfx);
b(3) = sum(k .* xfy); b(4) = sum(k .* yfy);
b(5) = sum(k .* fx); b(6) = sum(k .* fy);

v = inv(M) * b’;
A = [v(1) v(2) ; v(3) v(4)];
T = [v(5) ; v(6)];

10

% ---
%%% WARP IMAGE

function[f2] = warp(f, A, T)

[ydim,xdim] = size(f);
[xramp,yramp] = meshgrid([1:xdim]-xdim/2, [1:ydim]-ydim/2);

P = [xramp(:)’ ; yramp(:)’];
P = A * P;
xramp2 = reshape(P(1,:), ydim, xdim) + T(1);
yramp2 = reshape(P(2,:), ydim, xdim) + T(2);
f2 = interp2(xramp, yramp, f, xramp2, yramp2, ’bicubic’); % warp
ind = find(isnan(f2));
f2(ind) = 0;

% ---
%%% BLUR AND DOWNSAMPLE (L times)

function[f] = down(f, L);

blur = [1 2 1]/4;
for k = 1 : L

f = conv2(conv2(f, blur, ’same’), blur’, ’same’);
f = f(1:2:end,1:2:end);

end
% ---
%%% SPACE/TIME DERIVATIVES

function[fx, fy, ft] = spacetimederiv(f1, f2)

%%% DERIVATIVE FILTERS
pre = [0.5 0.5];
deriv = [0.5 -0.5];

%%% SPACE/TIME DERIVATIVES
fpt = pre(1)*f1 + pre(2)*f2; % pre-filter in time
fdt = deriv(1)*f1 + deriv(2)*f2; % differentiate in time

fx = conv2(conv2(fpt, pre’, ’same’), deriv, ’same’);
fy = conv2(conv2(fpt, pre, ’same’), deriv’, ’same’);
ft = conv2(conv2(fdt, pre’, ’same’), pre, ’same’);

% ---
%%% ACCUMULATE WARPS

function[A2, T2] = accumulatewarp(Acum, Tcum, A, T)

A2 = A * Acum;
T2 = A*Tcum + T;

11

Appendix B

Below is Matlab code for enhancing a stabilized video sequence. The function videoenhance takes
as input a data structure stable with field im that contains a stabilized video sequence (the out-
put of videostabilize, Appendix A). The output of this function are two images tempmean and
tempmedian that contain the results of temporally filtering the stabilized video.

% ---
%%% ENHANCE STABILIZED VIDEO

function[tempmean, tempmedian] = videoenhance(stable)

N = length(stable);
[ydim,xdim] = size(stable(1).im);

%%% BUILD A 3-D IMAGE STACK FROM THE INPUT SEQUENCE
stack = zeros(ydim, xdim, N)
for k = 1 : N

stack(:,:,k) = stable(k).im;
end

%%% FILTER
tempmean = mean(stack, 3);
tempmedian = median(stack, 3);

12

