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[1] A novel aerial observational method for studying internal features in the coastal ocean
is developed and tested in a study of large nonlinear internal solitary‐like waves.
Photogrammetrically rectified oblique photo images from a circling aircraft are used to
track a number of internal wave packets for periods of up to one hour in the Strait of
Georgia, British Columbia, Canada. Combining these sequences with coincident water
column data allows us to obtain a more complete view of the spatial structure of internal
waves. Highly accurate measurements of wave propagation speeds and directions are
possible. The applicability of various weakly nonlinear theories in modeling propagation
of the observed large‐amplitude waves is tested. The measured wave speeds enable us to
differentiate between classic internal wave models. The linear, KdV (Korteweg‐de Vries),
and BO (Benjamin‐Ono) models are applied with and without background shear. After
background shear effects are included, it is found that a continuously stratified BO equation
can predict propagation speeds within observational error, and that this is not true for other
theories. The technique may be useful in future studies of oblique internal wave interactions.

Citation: Wang, C., and R. Pawlowicz (2011), Propagation speeds of strongly nonlinear near‐surface internal waves in the Strait
of Georgia, J. Geophys. Res., 116, C10021, doi:10.1029/2010JC006776.

1. Introduction

[2] Internal waves are a widespread geophysical phe-
nomenon in stratified fluids. They exist in coastal seas,
straits, fjords, continental shelves, lakes, and the atmo-
spheric boundary layer, and are created by a large variety of
forcing mechanisms [e.g., Apel et al., 1995; Helfrich and
Melville, 2006; Helfrich and Grimshaw, 2008]. When the
wave amplitudes are very small, linear theory can satisfac-
torily predict their characteristics [LeBlond and Mysak,
1978]. However, in many cases the wave amplitudes are
large enough that nonlinear effects become important in their
dynamics. Waveform shapes will change and the propaga-
tion speeds tend to be larger than linear theory predicts. In
addition, nonlinear waves exhibit a number characteristics
(such as the existence of isolated pulses or solitary waves)
that are not described by linear theory. Large amplitude
internal waves can have a strong nonlinearity. As a conse-
quence the waves steepen and break into rank ordered soliton
trains. Nonhydrostatic dispersion then balances with the
nonlinearity and the soliton waveform is preserved.
[3] At small but finite amplitudes, analytical theories of

nonlinear waves are well‐developed [Helfrich and Melville,
2006]. Isolated pulses in real fluids are often similar to
so‐called “soliton” solutions to these nonlinear dynamical

equations. Laboratory experiments have verified many
aspects of these soliton solutions in certain parameter ranges
[e.g., Ostrovsky and Stepanyants, 2005; Koop and Butler,
1981], but some features (such as propagation speeds) have
not been well studied. There are also many field observations
of internal waves in the ocean. These rely on in‐situ obser-
vations including conductivity‐temperature‐depth (CTD)
profiles [e.g., Klymak and Gregg, 2004; Moum et al., 2003],
thermistor strings (T‐chain) [e.g., Marmorino, 1987; van
Haren, 2005], acoustic Doppler current profilers (ADCP)
[e.g., Moum et al., 2003; Colosi et al., 2001], echo sounders
[e.g., Farmer and Armi, 1999; Moum et al., 2003], Doppler
sonars [e.g., Pinkel, 1983], acoustic transceivers [e.g.,
Dushaw et al., 1995], bathythermographs [e.g., Wijffels and
Meyers, 2004], Lagrangian floats [D’Asaro, 2003;Centurioni,
2010], inverted echo sounders (IES) [Li et al., 2009], and
wirewalkers [Pinkel et al., 2011]. However, these data sets
are usually not well‐suited for making precise measurements
of propagation speed and direction. It is not clear, for exam-
ple, if repeated transects or horizontally separated moorings
resample the same part of a wavefront, or if their locations
are shifted laterally along the wave crests, or indeed if the
same wavefront is being sampled since wave‐wave inter-
actions may have occurred between the discrete observa-
tions. Some studies have used large collections of moored
instruments to study the evolution in time and space [Ramp
et al., 2004], but determining the true direction of propa-
gation and the evolution during the time the wave travels
between moorings is rather complicated.
[4] More direct wavefront observations, from which prop-

agation characteristics can be inferred, can sometimes be
made by exploiting a well‐known phenomenon in which
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near‐surface internal waves affect the roughness of the water
surface. These roughness changes result in banded changes
in the color and shade of the surface when viewed obliquely
at a distance. The interaction between surface waves and a
spatially varying current induced by the internal wave can
account for the presence of both smooth and rough bands
[Gargett and Hughes, 1972]. In an internal wave of depres-
sion in an approximately two‐layer water system where the
upper layer is much thinner than the lower layer, the surface
at the leading edge of the wave is much rougher due to
convergence and downwelling. On the other hand, at the
trailing edge, the upper layer water is upwelling and
diverging, and the water surface is smoother. When viewed
at highly oblique angles the surface reflectance dominates the
optical characteristics of light traveling outward from the
surface. The visible light reflected in these neighboring
regions then comes from different parts of the sky, which is
not uniformly lit, and hence they appear as contrasting bands,
darker or lighter than surrounding surface waters. Contrast-
ing roughness bands may also result in different responses
to radar pulses.
[5] These banding features of the water surface can be

captured by remote sensing equipment which operates at
oblique angles, such as synthetic aperture radar (SAR), or as
in this paper, optical imaging with a handheld camera.
Photographic methods have a long history. Some of the
earliest photographic observations of internal wave slicks
were made in the Strait of Georgia, British Columbia,
Canada [Shand, 1953; Turner, 1973], where the internal
waves are tidally generated by flow through neighboring
sills and channels [Gargett, 1976]. This region has also been
the site of SAR studies of internal waves [e.g., Hughes and
Gasparovic, 1988]. Space‐based remote sensing techniques
provide data over a wide area but have the disadvantage that
it is almost impossible to repeatedly observe the same wave
packet over short period of time. On the other hand, pho-
tographic techniques are ideally suited to repeatedly imaging
these features over short time periods.
[6] Oblique digital photography has been previously used

from helicopters [Farmer and Armi, 1999; Cummins et al.,
2003], as well as from fixed shore locations [Cummins et al.,
2003; Pawlowicz, 2003; Bourgault, 2007]. Time sequences
of photogrammetrically rectified images from shore stations
have been derived for quantitative analysis, but aerial pho-
tography has only been used qualitatively. Unfortunately,
although many regions of oceanographic interest are not
situated close to a convenient hilltop, adapting the photo-
grammetric techniques developed for fixed shore stations for
use on a rapidly moving platform introduces a number of
difficulties. Vertical motions and sharp turns cause the view
point to change rapidly, and optical measurements are often
quite sensitive to these variations. In addition, the lack of
spatial references from (say) trees or nearby coastlines can
make geometrical adjustments more difficult. Here it is
shown that these difficulties can be overcome in some prac-
tical situations, so that quantitative results can be obtained.
[7] In this paper, we discuss observations of near‐surface

internal waves in the Strait of Georgia. Combined aerial
and water column observations were made over a period of
several months, so that a wide variety of conditions were
observed. Using oblique aerial photography, the propagation

speeds of uniquely identified internal wave crests, far enough
apart that they do not interact with other waves over the time
period of the study, are determined in a direction normal
to their wavefronts. These waves are then considered to be
“solitary”, and hence their dynamics should be (approxi-
mately) described by soliton solutions to appropriate gov-
erning dynamical equations.
[8] The propagation speeds are then compared with pre-

dictions using various classical soliton theories. Although
the wave amplitudes are very large, and are thus not strictly
within the parameter range of these classical theories, it is
shown that good predictions are made using soliton solu-
tions to the Benjamin‐Ono (BO) equation [Benjamin, 1966;
Ono, 1975], but it is necessary to include both the effects of
continuous stratification and background baroclinic shear
in the mathematics. Other classical solutions, including the
well‐known Korteweg‐de Vries (KdV) soliton, do not pro-
vide a satisfactory match with the observations, even when
baroclinic shear and stratification effects are included. This
work thus also represents the first field validation of the
utility of the BO equation.
[9] In the next section, we describe the site of the study,

and the methods used to obtain observations. We then discuss
the form and propagation speeds of the waves observed.
Finally, we compare the observations of wave propagation
speeds with predictions made using a variety of analytical
and semi‐analytical theories of nonlinear wave propagation.

2. Method

2.1. Site

[10] The Strait of Georgia is a large marine waterway on
the west coast of North America (Figure 1). It is partially
enclosed by islands with Vancouver Island forming the
western boundary, and a complex of small islands and
channels marking its southern boundary. The Strait of
Georgia is about 220 km long and 33 km wide with an
average depth of 150 m, but with a small fraction of the total
area exceeding 350 m in depth. Depths in the regions
observed in this study are greater than 120 m.
[11] The tide has a maximum range exceeding 4 m in the

Strait. Although tidal currents can be greater than 1 m s−1 in
some of the constricted southern passages, they are gener-
ally no more than a few 10 s of cm s−1 within the Strait itself
[Foreman et al., 1995].
[12] Stratification is typical for fjord‐type estuaries, with

a large density gradient near the surface, little or no uniform
mixed layer, and relatively weak stratification at depth
[Pawlowicz et al., 2007]. The main source of freshwater
maintaining this stratification is the Fraser River. This river
discharges near the main entrance of the Strait of Georgia
and its turbid plume dominates the southern strait especially
in late spring and early summer [Halverson and Pawlowicz,
2008]. However, our observations were generally taken
away from the direct influence of the plume.
[13] Many internal waves in the Strait of Georgia are

concentrated near the surface, with maximum depressions of
as much as 7 m for isopycnals whose undisturbed depth,
within the gradient between the surface brackish water and
deep salty seawater is less than 5 m. The length scale (half
wave width) across the wave crest is of order 50 m, and the
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wave crests themselves can sometimes stretch for 10–20 km
across the Strait. It is this near‐surface location that results
in large near‐surface currents, which, in turn, result in fea-
tures regularly visible to the naked eye [Shand, 1953;
Turner, 1973; LeBlond and Mysak, 1978]. This visibility is
enhanced by the relatively calm and sunny conditions that
often occur for periods of several days within the Strait
during summer, separated by short periods of more windy
conditions in which the internal wave surface features can-
not be reliably viewed. Thus, the Strait of Georgia is a useful
natural laboratory for studying internal waves using optical
techniques.
[14] Preliminary aerial reconnaissance in 2001 suggested

that internal waves could reliably be found between Active
Pass and Point Roberts soon after times when the tidal
amplitude suggested low slack water. Field observations
discussed in this paper were then obtained during 5 trips in
the spring and summer of 2002 (May 24, June 3, June 10,
June 25, and June 26) timed around low slack water. It was
thought that internal wave amplitude might vary with the
fortnightly variation in tidal amplitudes, which arises from
tropic/equatorial variations related to lunar declination rather
than spring/neap variations in the Strait (largest constituents
are M2, followed by declinational constituents K1 and O1,
with S2 being rather small [Foreman et al., 1995]), and
perhaps with the ambient stratification, which intensified
during June as the freshet of the Fraser River peaks. Periods
of both large and weak tides in relatively calm conditions
were sampled, both before and during the freshet. From this
data set, 13 individual waves were analyzed. The waves
chosen appeared to be far enough apart from other waves
(either from the same wave packet or from other wave

packets) so that no wave‐wave interactions were occurring,
and thus can be treated as “solitary‐like” waves.

2.2. Observations

[15] The primary observational data set are time sequen-
ces of geographically located oblique aerial images (e.g.,
Figure 2) with known aiming direction. These were obtained
using a single‐engine 4‐passenger floatplane. However, these
sequences were interpreted with the aid of simultaneous water
column measurements, made within the field of view of
the images. These water column measurements include time‐
synchronized in‐water CTD, ADCP, echo sounder, and T‐chain
measurements. Water column measurements were obtained
from instruments mounted on a hovercraft (the Canadian
Coast Guard Hovercraft Siyay).
[16] Coordinated sampling was achieved by identifying a

suitable internal wave packet from the aircraft, and then
directing the hovercraft to a location immediately ahead of
the wave crest. This could be done relatively quickly in spite
of the distances involved (10 s of km) because of the high
speeds (>40 knots) possible with the hovercraft. Once in
place, the hovercraft then went into a “boating” mode in
which instruments were deployed into the water column, and
the hovercraft driven across the wavefronts. A disadvantage
of “boating” is that the vessel speed is limited to only a few
knots, occasionally causing the vessel to be temporarily
trapped in the surface convergence field. This degraded the
quality of echo soundings and T‐chain data. Maximum dis-
placements can be reliably determined but waveshapes are
often distorted.
[17] The instruments used include a 300 kHz RD Instru-

ments Workhorse “Sentinel” ADCP, and a 100 kHz echo

Figure 1. Map of the southern Strait of Georgia. The intensive field work for this paper research is car-
ried out mostly in the region between Active Pass and Point Roberts.
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sounder, co‐located on a mast deployed over the bow of the
hovercraft. The ADCP had a velocity resolution of 1 mm s−1

and an accuracy of ±1 cm s−1. Density profiles were
obtained using a Seabird Electronics SBE25 CTD. In
addition, vertical stratification was monitored by deploying
a chain of thermistors deployed over the side of the hover-
craft with temperature measured at nominal depths of 2, 3, 4,
5, 6, 8, 10, 12, 16, and 20 meters using RBR TR‐1000
loggers with a response time of less than 1 second. The slow
hovercraft transects tended to drag the chain so that it did
not hang vertically. A RBR XL‐200 temperature/pressure
logger was therefore placed at 21 m to monitor the vertical
position of the bottom of the chain. A Global Positioning
System (GPS) receiver continuously monitored the hover-
craft’s position throughout the study. All instruments were
time synchronized to within a few seconds.
[18] Ideal weather conditions for photo imaging are sunny

and calm without many cloud shadows or rough surface
waves. During a strait‐wide survey, the altitude of the air-
craft was as high as 1000 m to obtain a larger field of view,
but during coordinated sampling with the hovercraft, the
aircraft flew at an altitude of about 400 m and followed a
square track several kilometers across, centered on the target
area. This provides images at a dip angle of 5–10° (found
to be optimal for seeing surface reflectance variations). A
GPS recorded the track and altitude of the aircraft. The
aiming direction of the handheld Kodak DC265 camera
was monitored using a compass/tilt‐meter attached to the
base of the camera. Tilt‐meter, GPS and the photo time
stamp information were continuously and synchronously
logged.
[19] Directional accuracy for the compass/tilt‐meter was a

few degrees in the absence of acceleration, but achieving
this accuracy required some care as circling aircraft are
capable of large accelerations. To aid in accurate rectifica-

tion, the photo images were framed to include both the wave
feature of interest and either the coastline, horizon and/or
hovercraft to provide a known reference.

2.3. Rectification of Aerial Images

[20] A typical aerial oblique photograph (Figure 2) shows
an apparently rank‐ordered series of alternating light‐ and
dark‐colored bands. These raw photo images have to be
rectified, photogrammetrically mapped to ground coordi-
nates, and then processed using a series of filters and image
processing tools into a base image (Figure 3) before quan-
titative analysis can be applied [Pawlowicz, 2003].
[21] A summary of the procedure is as follows. First, each

pixel location is transformed into camera coordinates, iden-
tified as a view vector pointing from the center of the camera,
relative to the camera axis. Second, this vector is transformed
into earth coordinates with an origin at the camera location,
using camera aiming direction information and altitude.
Then, the relative intersection of this view vector with the
ground plane is found. The curvature of the earth must be
accounted for in this step. The ground point in earth coor-
dinates will be the point at which a line extending from the
origin in the view direction intersects the ground plane.
Finally, the coordinates of the ground point relative to the
camera are converted to true ground coordinates (latitude
and longitude). In order to carry out these transformations,
the latitude, longitude, and altitude of the camera/aircraft,
three orientation angles (rotation, dip below horizon, and tilt
around view axis), and camera parameters such as field of
view are required. In addition to these geometrical transfor-
mations, other image processing was also applied to remove
trees and land (when seen) and camera speckle. It was also
useful to remove dark edges that arise from lens properties
(so‐called vignetting) by subtracting a fitted function of the
camera focal length.

Figure 2. An image of internal wave slicks near Active Pass looking south on June 26, 2002. The hov-
ercraft Siyay providing water column data is the dark object at center right. The labels “1st”, “2nd”, and
“3rd” denote the same three waves as in Figures 3 and 4.
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[22] Although the GPS measurements of the aircraft lati-
tude and longitude are reasonably accurate, the orientation
angles are sometimes not as precise as required, especially
when the plane is changing altitude or making sharp turns,
because the tilt‐meter is sensitive to accelerations. The GPS
altitude data stream is also somewhat prone to large jumps
when the aircraft orientation is changing, and this required
some manual corrections. The relative orientation of camera
and tilt‐meter varied from trip to trip due to mechanical
variations in the attachment. Therefore, the recorded camera
angles of tilt, rotation, and dip and the camera altitude had to
be altered slightly by matching known locations and direc-
tions such as the coastlines and the position of the hovercraft
before the photo images were successfully mapped. The
average corrections of the three angles of tilt, rotation, and
dip are 5°, 10°, and 3°, respectively. The tilt angles vary
between −10° and 10°. The rotation angles range from 0° to
360°. The dip angles are around 6°. The corrections to the
altitudes (when made) are about 50 m. The errors induced by
all of the above result in an uncertainty in wave position,
and their effects will be contained within the error bars
estimated for derived characteristics.
[23] Measurements of propagation speed and direction are

derived from photographic time sequences. Each time
sequence lasts 15–30 minutes, with 1–2 images taken every
minute. These sequences are short enough that background
velocity and density fields remain relatively constant. Dur-
ing this period the waves propagate distances of 1–2 km.
Wave locations are geographically located to within an
uncertainty of less than 100 m, leading to uncertainties in
the propagation speed of less than 10%. At the same time,
tidal effects are obtained from coincident water column

measurements and subtracted. Background density and
baroclinic velocity fields are also determined.

3. Results

3.1. Wave Amplitudes

[24] Observable water column structure in both the echo
sounder and ADCP data sets, associated with internal
waves, was limited to the upper 20–30 m of the water col-
umn, which was generally deeper than 120 m. Displace-
ments associated with internal waves were seen most
cleanly in the echo sounder images (e.g., Figure 4). These
displacements are seen by the vertical excursions of largely
horizontal striations. As usual, the exact cause of such
striations in echo sounder images is not well understood, but
in the Strait of Georgia region they are thought to represent
enhanced backscatter from locations where the fine‐scale
vertical density gradients are especially large [Tedford et al.,
2009]. Water parcels containing these gradients are then
displaced vertically by the larger‐scale internal wave motions.
[25] Wave amplitudes for the different waves in Figure 4

are similar. Because of the slow and irregular speed of the
hovercraft in “boating” mode, the waveshapes (e.g., the
“2nd” wave in Figure 4) appear somewhat irregular, and
these irregularities may not represent real features. However,
it is possible to compare the maximum depth of a horizontal
striation against its “undisturbed” location to make relatively
robust and accurate estimates of the maximum displace-
ment. A similar process was applied to contours of T‐chain
data. Isotherms are taken as proxies for isopycnals. The
displacement of isotherms in contour images made through
the T‐chain data matches the displacements of the horizontal

Figure 3. The wave packet observed around Active Pass on June 26, 2002. Original image can be found
in Figure 2. Note that the leading six or so wave crests in the northern part of the image are far enough
apart that they do not appear to be interacting with each other. However, the wave pattern is quite
complex at the trailing end (southern) of the packet. The dark area at left is a wing of the airplane.
Hovercraft Siyay is the black dot about 300 m ahead of the first wave. The labels “1st”, “2nd”, and “3rd”
denote the same three waves as in Figures 2 and 4.
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striations in the sounder image, but isotherms can also be
located deeper in the water column. Isotherms near the
surface and at depth have small displacements and an iso-
therm at some intermediate depth has the largest displace-
ment. This maximum displacement for a particular wave
was taken to be the wave amplitude.
[26] Observations sometimes suggested that the isopycnal

depth after the wave passed was slightly different from that
in front of the wave. This could occur either because the
depth correction for the T‐chain data was not completely
accurate or due to asymmetries in the actual waveforms. In
these cases, the average of the downward and upward dis-
placements will be taken as the wave amplitude and the
associated error bar (usually about 10 %) is the difference
between the average and the two values. Measured wave
amplitudes span a wide range, from 2.2 to 7.3 m (Figure 5),
and the maximum displacement generally occurs at a depth
of 2–5 m.

3.2. Stratification and Background Currents

[27] The density profiles obtained from CTD measure-
ments near the waves analyzed in different days are sum-
marized in Figure 6a. Largest density changes are confined
in the upper 20 m, with most rapid decreases in the upper
5 m or so. Densities below 20 m remain almost uniform.
[28] The effects of background currents on internal wave

propagation can be separated into those due to the barotropic
or depth averaged currents and those due to the baroclinic

currents. Waves are simply advected by the barotropic tide,
whose effects are estimated by taking the depth average
current. This advection is a translation with no dynamic
relevance, but it affects the observations. In contrast, bar-
oclinic currents in the water column can change the wave-
shape and speed. In both cases, the observed current is
projected on the wave normal and only that component is
used in modeling. Both the barotropic and baroclinic cur-
rents were obtained from segments of the data that did not
include waves, i.e. either immediately before the leading
wave of a packet or between waves.
[29] Baroclinic current profiles for different cases, obtained

from ADCP data with the barotropic tide subtracted, are
shown in Figure 6b. These profiles represent baroclinic cur-
rents in the direction of wave propagation. The downward‐
facing ADCP does not measure currents in the upper 1.5 m.
The data are extrapolated by assuming that these currents are
the same as the topmost measured value. Surface baroclinic
currents are in the direction of wave propagation in some
cases, and against the direction of propagation in others. In
general, baroclinic currents are large near the surface and
relatively small below 30 m. The maximum magnitude of
baroclinic currents is less than 0.5 m s−1, and usually less than
0.2 m s−1, which implies that they are smaller than wave
propagation speeds. Thus the complicating issue of critical
layers [Baines, 1995] does not arise here.
[30] ADCP velocity profiles are contaminated by noise. In

computing the effect of the vertical shear in the horizontal

Figure 4. The in‐water Sounder data of the wave packet observed near Active Pass on June 26, 2002.
The labels “1st”, “2nd”, and “3rd” denote the same three waves as in Figures 2 and 3.

Figure 5. The observed wave amplitudes and wave phase speeds (a) before and (b) after barotropic tide
is removed.
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currents this raw data was used, but it was found that
wave characteristics computed with vertically smoothed
profiles only differed by ≈3%, which is smaller than other
uncertainties.

3.3. Wave Phase Speeds

[31] In the processed images (e.g., Figure 3), the rough
leading edge of a wave appears darker and the smoother
trailing edge is lighter. The northernmost waves in Figure 3
are associated with bands of width less than 100 m and are
well‐separated (about 200 m apart). It is likely that at least
the first five waves are far enough apart that they are no
longer interacting. Behind the leading waves is a more
confused region about 1 km in extent where wave crests are
irregular and the waves are clearly interacting with each
other.
[32] One of the most significant benefits of photo imaging

is that it allows us to track a particular wave without
ambiguity, and calculate its propagation velocity in the
direction perpendicular to the wave crest. The phase speeds
are taken to be the slope of the least squares fit to wave
positions, in the direction perpendicular to wave crests.
These waves are also advected by the barotropic tide, and
the magnitude of this tidal effect is subtracted to get a true

measure of the phase speed relative to the water. Wave
phase speed estimation of the wavefront (“1st”) in Figure 3
from image sequences is shown in Figure 7 as one example.
For each image the location of the leading edge was digi-
tized, and projected onto a vector perpendicular to the wave
crests. Their distances are shown in Figure 7 for a 20 minute
observation period. The observed offsets are not uniformly
increasing in time because of errors associated with the
changing observational geometry, but a robust estimation of
the propagation speed is obtained by a least squares fit over
this time interval. The observed phase speeds range from 0.6
to 1.2 m s−1 (Figure 5a), superimposed on tidal currents of
less than 0.25 m s−1. The corresponding observed speeds
after the tides removed (Figure 5b) have a similar spread.
[33] Generally it appears that larger waves have higher

phase speeds (Figure 5b), but the correlation is relatively
weak (correlation coefficient is 0.39). In addition to ampli-
tude, many other possible factors can affect the speed of
internal waves. Details of the stratification are certainly
important, but it is not clear whether or not these details can
be usefully simplified into, say, a layered system. Measured
shear profiles (Figure 6b) are somewhat difficult to char-
acterize. However, it is not obvious that the shear can be
neglected either. These waves, under any reasonable criteria,

Figure 6. The (a) density profiles and (b) baroclinic currents (taken at times with no internal wave pass-
ing by) in the direction of wave propagation for the studied cases of May 24, June 7, June 10, June 25, and
June 26. Only the top 60 m are shown. Variations of densities and shear currents are confined in a shallow
top layer (about 30 m deep). The rapid density variations are less than 10 m deep. On June 26, data of
currents are available for two locations, one location near Point Roberts and another around Active Pass.
Positive currents are in the same direction of wave propagation and negative currents are in the opposite
direction of wave propagation. The maximum magnitude of the baroclinic currents is less than 0.5 m s−1.
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can be considered “large” in amplitude, since they displace
isopycnals at depths of 2–5 m by anywhere from 2 to 7 m.

4. Internal Wave Theory

[34] The wave packets we observed were almost always
rank‐ordered, with larger well‐separated waves at their
leading edge. Wave separations are around 4 times of their
horizontal length scale. Although these waves are unlikely
to represent truly permanent forms they may be similar to
solitons and classified as “solitary‐like” waves. The mathe-
matical theory of solitary waves, derived under various
assumptions, may then be useful as a guide to their behavior.
Weakly nonlinear theories can sometimes provide surpris-
ingly accurate predictions, even for waves of large amplitude.

4.1. Internal Solitary Wave Models

[35] One of the most frequently used models of small‐
amplitude wave propagation is the Korteweg‐de Vries (KdV)
equation:

�t þ c0�x þ ���x þ ��xxx ¼ 0; ð1Þ

where h is the vertical layer interface displacement, c0 is the
linear phase speed, a is the nonlinear coefficient, and g is the
dispersion coefficient. It is well‐established that nonlinear
evolution equations of the KdV type form at least a first‐order
basis for qualitative modeling and prediction [Grimshaw,
1997]. Soliton solutions to this equation take the form of

� x; tð Þ ¼ ��0sech2 x� ctð Þ=L½ �; ð2Þ

with phase speed of

c ¼ c0 � ��0=3; ð3Þ
and a soliton half width of

L ¼ �12�=�0�ð Þ1=2; ð4Þ

where (x − ct)/L is the wave phase, and h0 is the wave
amplitude. The crucial parameters a and g in these equa-
tions, which depend on the stratification, shear, and local
depth, are described in Appendix A.
[36] Internal solitons in a layered medium have been

described by the KdV equation [see, e.g., Benney, 1966]
since 1876, but the KdV equation applies only to the shal-
low water (kD � 1), weakly nonlinear (small but finite
amplitude, h0/D � 1), and weak dispersion ((D/l)2 � 1)
cases with nonlinearity balancing dispersion. Here h0 again
is a measure of the wave amplitude, D = h1 + h2 is a measure
of water column depth, separated into layers of depth h1 and
h2, l is a measure of the wavelength in the direction of wave
propagation, and k = 2p/l. If l is only long compared to the
water depth below or above the interface (e.g., kh1 � 1), but
not to the whole water depth (kD > 1), implying that one of
the layers is much thinner than the other, then the waves are
called “deep‐water” internal waves. For a deep‐water wave,
small amplitude (weakly nonlinear) internal waves are
described by the Benjamin‐Ono (BO) equation [Benjamin,
1966; Ono, 1975]

�t þ c0�x þ ���x þ �
@2

@x2
H �½ � ¼ 0; ð5Þ

Figure 7. The positions of first wave at different times and its calculated phase speed once the effects of
the barotropic tide is subtracted. The time and distances are calculated with the first image in the studied
period as the reference.
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where the Hilbert operator H is defined as

H f½ � ¼ 1

�

Z þ∞

�∞

f x′ð Þ
x′� x

dx′: ð6Þ

and the linear speed c0 and a and g are given differently (see
Appendix A). Soliton solutions for BO equation are:

�BO x; tð Þ ¼ ��0
1þ x� ctð Þ=LBOð Þ2 ; ð7Þ

where

LBO ¼ 4�

�0�
; ð8Þ

c ¼ c0 � ��0=4; ð9Þ

[37] The weakly nonlinear intermediate‐depth case is
described by the Intermediate Long Wave equation (ILW)
which has been investigated by Joseph [1977] and Kubota
et al. [1978]. The ILW model equation solitons are a family
of solutions of one parameter, reducing to either KdV or BO
solutions in the appropriate limit.
[38] Unfortunately, the weak nonlinearity (small‐amplitude)

assumption presumed by KdV, BO, (and ILW) models does
not always seem adequate for the experimental and obser-
vational data that has been collected by researchers. There
are different extended models available such as extended
KdV (eKdV) or Gardner equation, containing higher‐order
nonlinearities for either two‐layer or continuously stratified
models [Grimshaw et al., 1997; Michallet and Barthélemy,
1998]. The eKdV equation has both quadratic and cubic
nonlinearities.
[39] An alternative to small‐amplitude theories has been

numerical solutions of either the fully nonlinear fluid equa-
tions or approximations thereof [e.g., Green and Naghdi,
1977; Lamb and Yan, 1996; Choi and Camassa, 1999;
Vlasenko et al., 2000]. The fully nonlinear models are usually
restricted to steady state, otherwise, the calculation of time‐
dependent solutions can be computationally expensive
[Helfrich and Melville, 2006]. Another alternative are ana-
lytical theories for waves of maximal amplitude [Choi and
Camassa, 1999].
[40] Note that for the waves we observe, D ≈ 120 m, h1 =

2–5 m, h0 = 2–7 m, and l ≈ 50 m. Thus kD ≈ 15, h0/D ∼
O(0.01), and h0/h1 ∼ O(1). Thus we would expect these to be
deep water, large, nonlinear internal waves. They are, how-
ever, far from maximal in amplitude [Wang, 2009]. How-
ever, among all the models or equations, the KdV model
seems to have the widest application in successful prediction
of experimental or observational solitons, even for large
amplitude solitary‐like waves which are outside of the strict
assumption of the KdV theory, while BO or ILW theory
appears not to do so [e.g.,Grue et al., 1999;Koop and Butler,
1981; Small et al., 1999]. “The question of why this solution
is suitable for waves of such large amplitude remains open”
[Small et al., 1999]. Some laboratory results [e.g., Koop and
Butler, 1981] even suggest that the KdV model matches
observations better in deep water than the BO theory which
was specifically designed for such cases. Koop and Butler
[1981] as in the review by Ostrovsky and Stepanyants [2005]

show a better match in a laboratory situation for wave-
lengths in deep water with KdV models. Some observational
research has also shown that the KdV equation is quite rea-
sonable in deep water, at least when wave amplitudes and
particle velocities are compared [e.g., Osborne and Burch,
1980], but a definitive comparison has not yet been carried out.
[41] In addition to the uncertainty about which basic

approach will work best in a particular situation, additional
uncertainty arises when we attempt to compute the a
and g parameters for the different equations. These require
additional assumptions about the nature of the stratification
and the background shear.

4.2. Internal Solitary Waves in Background Shear

[42] Shear is often ignored in studies of nonlinear waves.
However, Holloway et al. [1997] used a generalized KdV
equation to investigate the effect of shear and obtained
numerical solutions. They found that for the cases they
considered, the phase speed could be affected by shear by as
much as 15% to 30%. Grimshaw [1998] and Tung et al.
[1981] also studied the effect of shear on nonlinear inter-
nal waves and pointed out that a horizontal background
shear modified the wave parameters including wave phase
speed and wave half width. Stastna and Lamb [2002]
studied the effect of background shear on large fully non-
linear internal solitary waves under continuous stratification
and claimed that the presence of a background current could
also affect the maximal wave amplitude by modifying the
wave breaking onset condition. Choi [2006] considered
a two‐layer system (x‐z plane) with uniform shear and
obtained an analytical solution of his strongly nonlinear
model with a Boussinesq assumption. He found, when
compared with the irrotational (no shear) case, that positive
vorticity slowed down the propagation and increased the
width of a wave of depression propagating in the positive
x‐direction while it sped up the propagation and decreased
the wave width if the depression was propagating in the
negative x‐direction.
[43] The existing literature thus suggests that if there is

discrepancy between observation and model prediction, an
important factor which deserves attention is the effect of
the background shear or equivalently of baroclinic currents.
On the other hand, extending weakly nonlinear theories to
include shear effects can be done in a straightforward manner
because if a wave of fixed amplitude satisfies the KdV (or
other related) equations in the absence of shear, it will also do
this in the presence of shear, with only the equation coeffi-
cients being modified [Grimshaw, 1998]. Other papers that
discuss the shear effect on continuously stratified internal
waves include those by Tung et al. [1981] and Maslowe and
Redekopp [1980].
[44] Here, the effect of shear is examined by including/

excluding baroclinic currents in different internal wave the-
ories to predict wave propagation speeds. Comparisons are
made with the observed values. Two‐layer cases are analyzed
before the more complicated continuously stratified cases.

5. Analysis

5.1. Two‐Layer Stratified Cases

[45] A two‐layer approximation is often used for its ana-
lytical simplicity and therefore it makes sense to begin with
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this approximation. However, it is not obvious how one
would precisely define such an approximation for the types
of density profiles observed here (Figure 6). Heuristically,
an “upper layer depth”, however defined, would likely be no
larger than a few meters. Rather than fix this depth at any
particular value, we shall investigate the sensitivity of the
results over a range of choices, to see whether reasonable
results can be obtained by a tuning procedure. A sequence of
layer depths is chosen a priori over the range of 2 to 4 m.
Densities and background baroclinic velocities are then
averaged above and below this layer depth.
[46] We then calculate the predicted phase speeds from

linear long‐wave theory, as well as from different nonlinear
theories, all using the two‐layer approximation (Figure 8).
For all the studied cases, the BO equation predictions are
very similar to eKdV, strongly nonlinear and ILW equation
predictions. Thus the results for eKdV, strongly nonlinear,
and ILW equations are not shown in Figure 8. The hori-
zontal axis is a nondimensional wave amplitude formed by
dividing the measured amplitude by the (varying) upper
layer depth and the vertical axis is the ratio of the predicted
wave phase speed to the corresponding observed wave
phase speed. Ideally we could have c/cobs = 1 for some h/h1.
Values for each wave then appear along a roughly horizontal
line, with the numerical values for shallowest choice of layer
depth at the right‐hand end.
[47] The results (Figure 8) of this procedure are not

exactly the same for different cases, but some qualitative

conclusions can be made. First of all, it is clear that none of
the two‐layer model equations can be chosen with confi-
dence to predict the propagation of the studied waves. In no
case do the predictions collapse onto c/cobs = 1, whatever
layer depth is chosen. In fact, the sensitivity to layer depth is
relatively weak, with most of the curves lying roughly
horizontally, and scattered above and below c/cobs = 1. Also,
whereas c/cobs for linear predictions tends to be less than 1
(i.e. underpredicts the wave speed), c/cobs for various non-
linear models is much higher. Values are of the right order
for agreement, although there is still a great deal of scatter
about 1 for individual cases. Although it is not clear which
of the weakly nonlinear and strongly nonlinear equations
studied best describes the propagation speeds of the studied
waves, it is rather obvious that the linear predictions are
generally lower than the observed values.
[48] The similarity between solutions to the BO, eKdV,

strongly nonlinear, and ILW equations suggests that the
degree of nonlinearity is not an important factor in predictions
of wave speed, and that the range of depths is not particularly
problematic either, with the “deep water” approximation
remaining valid. Due to similarity to the BO predictions,
results for eKdV, strongly nonlinear, and ILW equations are
not explicitly included in the study of continuous cases.

5.2. Continuously Stratified Cases

[49] If we move from a layered approximation to a con-
tinuous stratification, expressions for the a and g coefficients

Figure 8. Comparison of wave speeds predicted by two‐layer theories (KdV, BO, linear) with observed
values. For each case, the wave amplitude is fixed as the observed value for that wave (i.e., from Figure 5)
and the upper layer depth h1 varied between 2 and 4 m. The left end of each line corresponds to an upper
layer depth of 4 m and the right end corresponds to an upper layer depth of 2 m. The vertical axis is model
predicted phase speed relative to the corresponding observed wave phase speeds, c/cobs. The horizontal
axis is the normalized wave amplitude.
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now involve integrals over complex functions involving
mode shapes derived from the Taylor‐Goldstein equation
(Appendix A), but these can be evaluated numerically using
our observed stratification and shear profiles.
[50] The results of fitting to weakly nonlinear model

equations with continuous stratification are summarized in
Figure 9. The results are displayed in six panels. The three
panels (a, c, and e) on the left‐hand side compare predictions
neglecting baroclinicity with observations. The three panels
(b, d, and f) on the right‐hand side show the corresponding
comparisons once baroclinic effects are included. Uncer-
tainties in observed propagation speeds are given by hori-
zontal error bars, and in predicted quantities (mostly a
function of uncertainty in amplitude) by vertical error bars.
These vertical error bars do not have a formal statistical
meaning, but rather represent the propagation of our “best
estimates” of the error in the observations. In general, the
observed wave speeds are between 0.7 m s−1 and 1.1 m s−1

with error bars less than 0.1 m s−1 and the predicted speeds
are between 0.6 m s−1 and 1.1 m s−1 with error bars less than
0.1 m s−1 as well. The thirteen cases are widely scattered
around the 1:1 line except panel f).
[51] By comparing the three panels on the left‐hand side

with the three on the right‐hand side, it is evident shear
significantly affects wave speeds. First consider the linear
cases in the top two panels a) and b). Before the shear
currents are included, predictions are smaller than observa-
tions for all cases except two waves on June 7. After shear is
included, predictions are smaller than observations for all
cases, albeit more tightly grouped. For all cases, the linear
equation tends to underestimate the observed propagation
speeds with the predicted wave speeds between 0.6 m s−1

and 0.9 m s−1.
[52] The KdV predicted wave speeds (panels c and d) are

generally faster than the linear equation predictions with
predictions ranging between 0.7 m s−1 and 1.0 m s−1. The
comparison between predictions and observations are bet-
ter than the linear cases, but there is still much scatter.
Most predictions are still several error bars different than
observations.
[53] Finally consider the bottom two panels (e and f) for

the BO equation. Comparing the sheared BO (f) with the
sheared KdV (d) predictions, some of the markers are fur-
ther moved upward and some are moved downward. The
BO equation predicts phase speeds that are different from
those of the KdV equation. For 11 of the 13 cases the
BO predictions, with baroclinicity included, overlap with
observations within the error bars, and the 2 remaining cases
are very close.
[54] Without including the effects of shear currents, none

of the classic models are particularly satisfactory. For most
cases, the difference between the predicted values and the
observed values are much greater than the error bars.
Matching between the BO equation predictions and obser-
vations are not obviously better than the matching between
KdV predictions and observations. However, after the
effects of shear are included, the matching between the BO
equation predictions and observations are greatly improved
and the BO predictions are overall closer to observations
than KdV predictions. Including shear significantly improves
predictions for KdV and BO models in the sense of matching

with observations, but only the BO equation can predict
wave propagation within the observational uncertainties.

6. Conclusion and Discussion

[55] By using photogrammetrically rectified sequences of
oblique aerial photographs, relatively precise measurements
have been made of wave propagation speeds in a variety of
conditions in the Strait of Georgia. Not only were partic-
ular waves unambiguously identified over the length of the
sequences, but we could choose waves in a packet that were
far enough apart that they could reasonably be described as
“solitary‐like” and compared with known soliton solutions.
Wave propagation speeds and directions are determined
using oblique aerial photography. Wave propagation direc-
tions may also be estimated by analysis of the spatially‐
separated beams of a moored ADCP [Chang et al., 2010].
Measured propagation speeds were between 0.6 and 1.2 m
s−1. Particular attention was paid to quantifying the mea-
surement errors, which were typically about 10%. Previous
attempts at verifying wave theories have relied on compar-
isons with the waveshape and particle velocities.
[56] In addition, simultaneous water columnmeasurements

of stratification and water column velocity allowed us to both
determine wave amplitudes, as well as background condi-
tions and tidal effects.Wave amplitudes ranged from 2 to over
7 m. Correction for tidal effects was important. The magni-
tude of the tidal current was between 0.02 and 0.25 m s−1.
[57] The largest changes in stratification occurred very near

the surface, such that a reasonable “layer depth” of the upper
layer would be only a few meters, in a water column >120 m
in depth. The internal waves are thus “large” in the sense that
a scaling of h/h1 ≥ O(1), but fall well within a “deep water”
classification. Weakly nonlinear internal waves are described
by classic model equations and in particular their results are
often arbitrarily applied in strongly nonlinear cases, such as
those we observe here. Most laboratory or field research
surveys in the literature match observations against the
shallow‐water KdV equation, even when their waves are
strictly out of the scope of the KdV equation because they are
in deep‐water regime [Osborne and Burch, 1980; Koop and
Butler, 1981; Michallet and Barthélemy, 1998] or have
large‐amplitudes [Small et al., 1999].
[58] Our investigations showed that the weakly nonlinear

BO equations, using continuous stratification and including
shear effects, correctly predicted wave propagation speeds.
In fact there was little difference in predicted speeds between
the weakly nonlinear two‐layer BO and a fully nonlinear
two‐layer prediction, suggesting that extending the theo-
retical descriptions to include higher order nonlinearities is
not important in modeling real oceanic internal waves. This
is the first time that a BO description has been found to
usefully model a real‐world situation.
[59] On the other hand, two‐layer approximations were

inadequate, even when tuning of the layer depths was attemp-
ted. The fact that continuously stratified equations provide
better predictions than two‐layer approximations was previ-
ously found to be true in a situation where the KdV equation
provided the best description [Gan and Ingram, 1992].
[60] Also, although baroclinic velocities were small and

not easily related to the density field, their effect was
important. Before the baroclinic currents (i.e. shear effects)
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Figure 9. Comparison between observed and predicted wave propagation speeds using continuous
models. There are thirteen wave cases from five different days. The vertical line crossing each dot
is the error bar due to wave amplitude estimation. The horizontal line is the error bar coming from
wave phase speed estimation.
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were included, none of the studied model equations, includ-
ing the BO equation, could provide satisfactory predictions
of propagation speeds. The effect of shear is evident in all
cases for all the different predictions. If the surface bar-
oclinic current is in the same direction as the wave propa-
gation, the predicted phase speeds in all situations are
increased. When the upper layer baroclinic current is neg-
ative, they are all decreased. Largest velocities were some-
what smaller than wave propagation speeds, so the
formation of critical layers was not important.
[61] Our situation is somewhat different from Choi [2006]

who studied the effect of shear numerically. Choi’s model
has uniform linear shear slope in both the upper layer and
the lower layer, while for our cases, the lower layer is rather
quiet with nearly no stratification and zero baroclinic current
or shear slope. However, if we substitute W2 = 0 (zero lower
layer shear) or W2 � W1 into Choi’s equation (2.9), positive
W1 (positive upper layer baroclinic current) will increase the
wave propagation speed in the positive x‐direction, i.e. the
upper layer baroclinic current direction, which is what we
expect based on our observations above.
[62] We have neglected to consider the effects of the

earth’s rotation in our analysis. The effect of Coriolis terms
has been investigated in the study of internal waves [e.g.,
Gilman et al., 1996; Helfrich, 2007; Helfrich and Grimshaw,
2008; Helfrich, 2008; Farmer et al., 2009]. Rotation is found
to have some effect, especially when the length scales of
internal waves are of the order of tens of kilometers or of the
scale of internal tides [Gilman et al., 1996; Helfrich, 2008].
These scales are much larger than those considered in
our observations. However, according to Helfrich [2007],
when the length scale (l) is smaller than the deformation
radius, the effect of rotation is still not necessarily negligi-
ble. If g2 = O(a) (where g = l/LR, a = a/hs, a is amplitude, hs
is the characteristic depth scale, LR is the deformation radius)
then these weak rotational effects are comparable to the
nonlinear and nonhydrostatic effects. For the waves observed
in the Strait of Georgia, l is about 50m, and LR is about 30 km,
therefore g = O(10−3), while a = O(1). Thus, g2�O(a), and
so the rotational effect is small. The relative importance of
rotation compared to nonlinear and nonhydrostatic terms can
also be estimated using the Ostrovsky equation (a KdV
equation with rotation) [Farmer et al., 2009]. The Ostrovsky
number, a ratio of the nonlinear to rotational terms is cal-
culated as Os = O(103) for waves observed in the Strait of
Georgia. The ratio of the nonhydrostatic term to rotational
term is calculated as ≈600. It is clear that rotational effects
are very small compared to nonlinear and nonhydrostatic
effects. Finally, individual waves were tracked for less than
an hour, far less than an inertial period. Thus, even if these
small rotational effects have long‐term consequences, they
are unlikely to appear in our data set. It is possible that
rotation may play a role in the large‐scale degeneration of
internal tides into these smaller waves, but in the Strait of
Georgia it is more likely that these waves are initially
formed by the tidal release of topographic lee waves less
than 12 hours earlier [Wang, 2009].
[63] Finally, it is perhaps unexpected that the propagation

speeds of these strongly nonlinear large‐amplitude internal
waves in the Strait of Georgia are reasonably well described
by weakly nonlinear deep‐water theory (with continuous

stratification and shear) even though their amplitudes are
O(1). However, this conclusion, derived from geophysical
observations, is also supported by a recent numerical anal-
ysis. Camassa et al. [2006] compared a strongly nonlinear
model with weakly nonlinear KdV and ILW theory in a two‐
layer system. In Camassa et al.’s Figures 14a and 15a, when
the wave amplitude is about 1 or less, the weakly nonlinear
theory is not dramatically different from the fully nonlinear
theory or the experimental data collected by Michallet and
Barthélemy [1998]. Of course the difference between the
weakly nonlinear theories and the strongly nonlinear theory
and the difference between theories and the experimental
data increases with the increase of the wave amplitude.
Based on their results, if the wave amplitudes in the Strait of
Georgia became significantly greater than 1, we may find
that no weakly nonlinear theory is able to describe the waves.
Interestingly, Camassa et al. [2006], like most of other
existing literature, found that KdV theory works better than a
deep‐water configuration (called ILW in their paper) even in
deep‐water situations. The lack of success of previous
research in using the BO model is likely because shear and
stratification effects are not correctly accounted for, rather
than any shortcoming of the BO model itself.

Appendix A

[64] Parameters for two‐layer KdV equation are:

c0 ¼ g D�=�ð Þheff
� �1=2

; ðA1Þ

� ¼ � 3c0=2ð Þ h2 � h1
h1h2

; ðA2Þ

� ¼ c0h1h2=6; ðA3Þ

where heff = h1 h2/(h1 + h2), and h1 and h2 represent the
depths of the upper and lower layers.
[65] Parameters for two‐layer BO equation:

c0 ¼ g D�=�ð Þh1½ �1=2; ðA4Þ

� ¼ � 3c0
2h1

; ðA5Þ

� ¼ c0�2h1
2�1

; ðA6Þ

[66] In a continuously stratified and sheared system, the
KdV equation (1) and its solutions (2)–(4) still apply, but its
coefficients are now dependent on the mode shape (�) and
mode speed (cshear) of the linear long wave Taylor‐Goldstein
(TG) equation (A7) with wave number k = 0.
[67] The Taylor‐Goldstein (TG) equation can be written

[Baines, 1995]:

d2

dz2
�þ N 2

U � cshearð Þ2 �
Uzz

U � cshear

" #
�� k2� ¼ 0: ðA7Þ
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with boundary conditions:
at z = 0,

� ¼ 0; ðA8Þ

at z = −D,

� ¼ 0; ðA9Þ

where � is mode shape, k is wave number, U(z) is the
baroclinic current, cshear is the linear wave phase speed with
baroclinic current U, N =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� g=�ð Þ @�=@zð Þp
is the buoyancy

frequency.
[68] In solution (3) c0 is now replaced with the mode

speed cshear of equation (A7) and a and g are given by
[Grimshaw, 1998; Stastna and Lamb, 2002]:

� ¼ 3

2

Z 0

�D
�0 cshear � Uð Þ2 3

z dz=I ; ðA10Þ

� ¼ 1

2

Z 0

�D
�0 cshear � Uð Þ2 2dz=I ; ðA11Þ

where

I ¼
Z 0

�D
�0 cshear � Uð Þ 2

z dz; ðA12Þ

with y = �/(cshear − U) and yz = dy/dz.
[69] For the BO equation, since the internal waves

observed in the Strait of Georgia have wavelengths much
greater than the depth of the thin layer where density
stratification and baroclinic currents reside, these internal
waves can be treated as long waves inside the thin shear
layer (with depth h1), and then asymptotically matched to a
short wave solution in an infinitely deep lower layer with
uniform density and no shear. The profiles are then used in
the Taylor‐Goldstein equation to get mode shape (�) and
mode speed (cshear) [Grimshaw, 1998; Tung et al., 1981;
Maslowe and Redekopp, 1980]. The boundary conditions
are rigid top and zero derivatives at the virtual boundary at
infinity (�z = 0 at z = −∞) in the asymptotic upper layer
solution. With this mode shape and mode speed, a is again
given by equations (A10) and (A12) with −D now replaced
by −∞. The parameter g is given by Ig = (r0c0

2y2)z→∞
according to Grimshaw [1998]. The lower boundary is taken
to be at −500 m for numerical convenience, changing to
−1000 m makes little difference.
[70] Below the shear layer, the wave is not “long” any

longer, therefore the term −k2� in the TG equation needs to
be considered. Also stratification and currents below the
shear layer will be uniform, which means that the shear and
the buoyancy frequency will both be zero. Then the equation
for this outside domain is a solution to (d2�/dz2) − k2� = 0,
and the outside region solution has to match with the inside
solution of the shear layer. The solution of this outside
domain then is � = Ae−kz, which will need to be normalized
so that its maximum is 1 in order to match the wave modes
of the inside waveguide domain.
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