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[1] Although nonlinear interactions that occur when two large internal waves collide at
oblique angles are often observed in the natural world, quantitative and theoretical aspects
of these interactions are only poorly understood. The available analyses are generally
theoretical or the result of limited numerical experimentation, with few (if any) quantitative
field measurements. Here we describe four cases of internal wave interactions, two of
which involve the fundamentally non-steady generation of “Mach stems” at the site of the
interaction, observed in the Strait of Georgia, Canada. Details of the interactions are
quantified using time sequences of photogrammetrically rectified oblique images obtained
from a circling aircraft, while simultaneous observations are made of water column
properties from a surface vessel. The imaging technique allows us to estimate the speed
and direction of each wave, as well as details of phase shifts induced by interactions.
An existing small-amplitude theory is applied but is found to overestimate the likelihood of
Mach interactions at large amplitude.

Citation: Wang, C., and R. Pawlowicz (2012), Oblique wave-wave interactions of nonlinear near-surface internal waves in the
Strait of Georgia, J. Geophys. Res., 117, C06031, doi:10.1029/2012JC008022.

1. Introduction

[2] What happens when waves in two spatial dimensions,
moving in different directions, cross each other? When wave
amplitudes are small, then the dynamics are “linear” and the
waves do not interact. They pass through each other without
changing their amplitude, wavelength, or propagation
direction. However, when wave amplitudes are large, which
can be defined in a mathematically precise way, then their
speed can depend to some extent on the wave amplitude,
with larger waves moving faster. When such waves cross,
amplitudes superimpose, and one might expect a region with
an even larger displacement at the intersection. What are the
consequences of this larger displacement? Larger displace-
ment implies larger currents. In some cases larger displace-
ment can lead to breaking and hence enhanced mixing. In
others, there may be a resonant transfer of energy between
different waves. Or will waves still pass through each other
without change? All of these factors may be important in
determining the propagation and dissipation of internal wave
energy, and the effects of internal waves on ocean structures
such as oil platforms.
[3] This problem is both obscure and almost completely

unstudied, yet widespread and ever-present in the natural

world. Although there is a vast literature on non-linear wave
propagation, and entire books and even fields of mathe-
matics [e.g., Osborne, 2010] devoted to such interactions
when both waves are proceeding in the same direction the
useful literature associated with the oblique interaction of
nonlinear waves consists of about a dozen papers over the
past 35 years. On the other hand, these interactions are
easily seen in surface waves on flat beaches. They can also
be identified to some degree or other in almost any satellite
image containing a number of internal wave “packets”. This
is because, under certain conditions, the velocity field
associated with internal waves can modulate the surface
wavefield, creating “slicks” above the wave crests. Changes
in surface roughness associated with these slicks are highly
visible.
[4] However, quantitative analysis using satellite images

is difficult because they provide only “snapshots” of the
wave at widely-spaced times. Only qualitative information
can be derived about individual waves. Measurements from
ships using either acoustic or lowered instruments very often
can only provide data at a single point. Some studies have
used collections of moored instruments, but it is hard to
determine what occurs between moorings. In addition,
changes along the wave crest from one part of the wave to
another are not easy to see, and hence wave-wave interac-
tions occurring when the two waves are propagating in dif-
ferent directions impossible to observe accurately. Due to
the limitations of such observational methods, there are no
geophysical observations known to us that quantitatively
describe oblique interactions of individual internal waves.
[5] The purpose of this paper is then to describe what is

known about oblique nonlinear wave interactions, and to use
a novel observational technique involving time series of
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photogrammetrically rectified oblique aerial photos to char-
acterize examples of oblique interactions between internal
waves found in the natural world. The observational tech-
nique used is capable of determining both the speed and
direction of individual waves, and this is supplemented by
water column data about wave structure and ambient strati-
fication [Wang and Pawlowicz, 2011]. It can also determine
the degree to which an interaction is steady or non-steady.
[6] In the next section, oblique nonlinear wave interac-

tions are classified and described on a theoretical basis.
Theory is most advanced for shallow-water surface waves,
but applications to internal waves are discussed. Then, the
observational technique used to obtain data from internal
waves in the Strait of Georgia, British Columbia, is briefly
described. A number of interaction patterns are analyzed,
and their characteristics compared with theory.

2. Theoretical Background

[7] Consider the interaction of two crossing waves, whose
wave crests are straight and long enough that “edge” effects
will not be important at the location of their crossing point.
There is a certain difficulty here in reconciling this picture
with time-dependent variations at the interaction location but
some rationalization by recourse to reflection symmetries is
possible when waves initially traveling parallel to a wall
encounter a change in wall direction [e.g., Melville, 1980].
[8] Normalized wave amplitudes before any interaction

are h1 and h2, which may be the same or different. Nor-
malization is done by water depth for long surface waves, or

by an effective depth for long internal waves in a stratified
system. In the case of internal waves in a shallow stratified
layer above an infinitely deep lower layer, then the effective
depth is approximately the depth of the shallow layer.
[9] The angle between the wave normals �k1;2 is called the

interaction angle y, measured in radians. The location of
each wave at time t is described by a phase qi ¼ �ki⋅ �x� �citð Þ,
where �ki sets the length scale in the direction of propagation
and �ci is the phase speed in that direction. For solitons the
wave displacement is the largest near q ≈ 0 and goes to zero
for jqj ≫ 1.
[10] A careful study of the literature finds that wave

interactions of finite but small amplitude waves under these
conditions can be categorized into no less than seven types
(Figure 1). Different cases have been investigated by dif-
ferent authors, with some overlap. The general tool for the-
oretical investigations involves asymptotic expansions
around particular cases (e.g., head-on or parallel propaga-
tion, similar or wildly dissimilar amplitude ratios, etc.), so
that derived formulas that quantitatively define transition
points agree only to first order, and hence are not exactly
consistent with one another as they overlap outside their
region of strict validity.

2.1. Oblique Interaction of KdV Waves

[11] The first comprehensive investigation of such wave-
wave interactions was that of Miles [1977] who investigated
small-amplitude shallow-water interactions between solitons of
the form sech2(q) governed by the Korteweg-de Vries (KdV)

Figure 1. Schematic illustration of the types of interactions that can occur between two obliquely
crossing solitons. At left is shown the regions for different interactions in a (h2, y) parameter space.
Cases are (1) overtaking, (2) obliquely overtaking, (3) non-steady Mach interaction, (4) regular interaction,
(5) non-interacting at y = 2p/3, (6) obliquely colliding, (7) head-on colliding. Cases (1) and (2) are strong
interactions and phase-conserving. Cases (3) and (4) are strong interactions and non-phase-conserving.
Cases (6) and (7) are weak interactions and non-phase-conserving. Reflection cases occur when h1 = h2.
At right are shown schematic overhead views of the interaction region between two different wave crests.
Crests are shown as lines, with larger amplitudes appearing as thicker lines. Arrows show phase propaga-
tion speed and direction.
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equation. Miles [1977] classified the interaction processes of
solitary waves into “symmetric” and “asymmetric”, “strong”
and “weak”, “phase-conserving” and “non-phase-conserving”,
“regular” and “Mach” interactions.
[12] The interaction processes of solitary waves were

classified into “symmetric” interactions (i.e. reflections at a
wall) and “asymmetric” interactions by comparing the wave
amplitude difference and the interaction angle. If two waves
interact and their amplitude difference is small compared to
the (radian) interaction angle, i.e. jh2′ � h1′j < y2, then their
interaction can be treated as reflection to first order with one
of the two interacting waves regarded as the incident wave
and the other one as its image. Otherwise, it is an asym-
metric interaction.
[13] Wave interactions were categorized into “strong” and

“weak” according to the length of the interaction time and
the magnitude of the resulting phase shift. A strong inter-
action occurs when the two solitary waves propagate in
almost the same direction, interact for a relatively long time
and emerge with phase shifts of order O(1). Mathematically,

an interaction is strong when y
2

� �2 ¼ O h′1;2
� �

. Overtaking is
the special case of a strong interaction when the interacting
waves are propagating in the same direction. Strong inter-
actions are intrinsically nonlinear.
[14] A weak interaction corresponds to the interaction of

solitary waves propagating in very different directions, so
that the interaction time is relatively short. Phase shifts are of
order O(h′1,2). A head-on collision is one special case of a
weak interaction when the propagation directions of the
interacting waves are opposite. Weak interactions permit
superposition of the individual solutions to a first order
approximation.
[15] An interaction is phase-conserving if the sum of the

phases of the incoming waves is equal to the sum of the
phases of the outgoing waves. The phase shift is defined by
Miles [1977] as d such that a wave described by sech2(q), is
expressed as sech2(q � d) after phase shift d. A positive
phase shift means the wave appears to jump forward. Phase
conserving interactions then have one wave jumping for-
ward and one wave jumping backward. Interactions are
found to be phase-conserving if the difference in wave
amplitudes (jh2′ � h1′j) is greater than the square of interaction
angle (y2), but not conserved if jh2′ � h1′j < y2. Symmetric or
reflection problems are not phase-conserving.
[16] When two waves come from exactly opposite direc-

tions (case 7 of Figure 1), the angle between the two wave
normals is 180�, and the interaction is a head-on collision.
Typically both of the interacting waves are shifted back-
wards, relative to the location they would appear in without
the interaction occurring (i.e. they experience a negative
phase shift), although they continue propagating in the
original directions. The interaction does not conserve phase
since the sum of the phase shifts is negative. It is also a weak
interaction.
[17] When the interaction angle is between 120� and 180�,

the two interacting waves also both shift backward (case 6 of
Figure 1). This is qualitatively not very different from the
head-on collision case, although the degree of phase shift
decreases as the interaction angle decreases. These nearly
head-on cases are also weak interactions that do not con-
serve phase.

[18] When the angle between the wave normals of the two
interacting waves is 120� (case 5), the two interacting waves
experience no phase shift at all [Matsuno, 1998; Grimshaw
and Zhu, 1994]. This occurs irrespective of any differences
in wave amplitudes.
[19] When the interaction angle is 0�, then an interaction

can only occur if the wave amplitudes are different. This is
fundamentally asymmetric. Consider a larger wave over-
taking a smaller wave (case 1). These waves interact for
relatively long time and the interaction is classified as strong
interaction. After an overtaking interaction, the larger wave
appears ahead of the smaller wave, and its phase is advanced
relative to where it would have been without the small wave
appearing. Conversely, the smaller wave in front later
appears behind, and its phase has shifted backward, i.e. it
appears to have not moved as far as it would have without
the interaction occurring. This kind of interaction is phase-
conserving, because mathematically the backward and for-
ward shifts cancel in a sum [Miles, 1977]. This is the most
well-studied case.
[20] If these two waves, moving in roughly but not exactly

the same direction (case 2, i.e. with small interaction angle),
have different amplitudes, then one can treat the interaction
as approximately (or locally) the same as case 1. These
interactions are strong interactions. Moving along the crests
is roughly the same as moving forward or backward in time
in the 1D (case 1) interaction, and phase is again conserved.
Note that for the above discussed cases the direction of
propagation of the two waves remains unchanged by their
interaction.
[21] However, we now have the additional possibility of

two waves with the same amplitude interacting (central
region of case 3, Figure 1). This cannot be an overtaking
case since the speed of each wave has the same magnitude.
However, it can occur for any non-zero interaction angle.
This could also be considered the symmetric interaction that
occurs as a wave hits a wall at an oblique angle (i.e. a
reflection; see Figure 2a), with one wave being the incident
wave and the other a reflected wave [e.g.,Melville, 1980]. In
such cases a third wave appears near the wall. This third
wave is often called a “Mach stem”, but in fact a further
subdivision of cases exists and we classify these cases as
either “regular” or “Mach” interactions.

2.2. Mach and Regular Interactions

[22] For small but finite amplitudes, Mach interactions
(case 3 of Figure 1) occur for an intermediate range of angles
under the condition [Miles, 1977] that

y� < sin2
y
2
< yþ ð1Þ

where

y� ¼ 3

4

ffiffiffiffiffi
h′1

p � ffiffiffiffiffi
h′2

p� �2
: ð2Þ

[23] If the amplitude of one of the waves gets very large,
then the range of interaction angles for which the non-steady
behavior occurs also increases, but reaches a maximum of
about 127� [Johnson, 1982] (right side of case 3 in Figure 1).
In the limit as the amplitude of the waves becomes very
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small, the range of angles for which Mach interactions occur
also becomes small.
[24] For reflection problems where the two amplitudes are

similar, Mach interactions occur for all angles up to a critical
angle:

y < 2
ffiffiffiffiffiffiffiffiffiffi
3h′1;2

q
ð3Þ

[25] The name “Mach” arises because of its mathematical
and geometrical similarity to shock-wave reflection pro-
blems in supersonic gas dynamics [Whitham, 1974]. In such
interaction problems, in addition to the incoming and out-
going waves, a third wave appears, perpendicular to the
wall. All three waves meet at a point away from the wall
(Figure 2a). The length of the wave crest of this third wave

(the “Mach stem”) grows with time, and this implies that the
propagation direction of the trailing wave will also change.
The growth rate is given by a non-zero “step angle” y*. The
interaction is fundamentally non-steady.
[26] However, for interaction angles larger than the critical

value (equation (1)) and less than 120� the stem no longer
grows with time, appearing instead as a “bar” between two
waves that are shifted forward by the interaction (case 4, not
phase-conserving), but whose propagation directions are
unchanged. The steady wave generated between the original
waves and the phase shifted waves due to interaction is
called runup (Figure 2b).
[27] More recently nonlinear wave interactions have

been studied as a model for rogue waves [Soomere and
Engelbretcht, 2006]. An overview of the practical applica-
tion of certain properties of phase shifts, and the resulting

Figure 2. Schematic definition of Mach interaction and regular interaction of two waves h1 and h2,
(h1, h2) → (h1d, h2d). h2 (h1d) will be the image of h1 (h2d) for the reflection case. Figure 2a corresponds
to case 3 of Figure 1. Figure 2b corresponds to case 4 of Figure 1. Figure 2c corresponds to case 6 of
Figure 1. When incident waves are similar a plane of symmetry exists (hatched line),which can be replaced
by a solid wall to create a reflection problem.
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high wave hump during Mach interaction and nonlinear
interaction of solitons can be found in Soomere [2007].
Although these kinds of interactions are sometimes also
called Mach stems, and are also found as periodic solutions
to the so-called Kadomtsev-Petviashvili equation [Hammack
et al., 1995], we shall label these as “regular” interactions and
reserve the name “Mach stem” only for the fundamentally
non-steady solutions.
[28] If we define ɛ ≡ y

2 =
ffiffiffiffiffiffi
3hi

p
, then for reflection pro-

blems we have the following [Tanaka, 1993]:
[29] 1. ɛ < 1 for Mach reflection and ɛ > 1 for regular

reflection.
[30] 2. Step angle y* = 0 for regular reflection, but a

nonzero y∗ ¼
ffiffiffiffiffiffiffiffiffi
h′i=3

p
1� �ð Þ for Mach reflection, i.e. largest

for shallowest angles.
[31] 3. The maximum runup at the wall is

2þ 3
2 sin2y2

� 3þ 2 sin2 y
2

� �
h′i

� �
hi for non-grazing regular

reflection and the amplitude of Mach stem hM is (1 + ɛ)2hi
for Mach reflection. Thus the largest “stem” wave occurs at
the transition between regular and Mach reflection, and is
about four times the amplitude of the incident wave.
[32] 4. The amplitude of the reflected wave hr equals the

amplitude of the incident wave hi for regular reflection but is
only ɛ2hi for Mach reflection. Thus at shallow angles the two
waves may appear to merge with very little left of the orig-
inal waves after they interact.
[33] 5. The angle of reflection yr equals the angle of

incidence yi for regular reflection and
ffiffiffiffiffiffiffi
3h′i

p
for Mach

reflection.
[34] If the two amplitudes are only slightly different, with

|h2′ � h1′ | < y2 [Miles, 1977], so that the problem is approx-
imately (or to first order only) a reflection problem, then one
might expect a well-defined transition from case 2 behavior
to case 3 behavior at some nonzero interaction angle, fol-
lowed by a transition to case 4 behavior as the interaction
angle increases.

2.3. Numerical and Laboratory Investigation

[35] After Miles’ pioneering work, laboratory and numer-
ical investigations were performed to test his theoretical
results. Melville [1980] performed laboratory experiments.
He supported Miles in predictions of critical angle, but the
measured amplitude of the Mach stem at the wall in these
experiments is considerably lower than predicted from
Miles’ theory. Funakoshi [1980, 1981] tested the theory
using a numerical model. He stated that the discrepancy
between Miles and Melville inthe amplitude of the Mach
stem was due to the insufficient interaction time allowed in
Melville’s measurements.
[36] Tanaka [1993] also examined large amplitude wave

interactions numerically. He concluded that Miles’ results
only apply to weakly nonlinear i.e. small amplitude wave
cases with h1,2′ ≪ 1. For larger amplitude waves, the effect of
the large amplitude tends to prevent Mach reflection from
occurring. If Mach reflection does take place for large
amplitude waves, it will differ from small amplitude cases.
The interaction will be “contaminated” by regular reflection
with the amplitude of the reflected wave close to that of the
incident wave. These results are closer to the analytical esti-
mates of Johnson [1982]. Thus Tanaka’s [1993] conclusion

was that Miles’ results are apparently only quantitatively
useful if the wave amplitudes are sufficiently small.

2.4. Internal Waves and Deep Water

[37] Although the above analysis was carried out for
shallow water surface wave solitons, the equations used
were of the KdV type and hence the results should be
applicable to internal waves described by modes in a long-
wave approximation as well. This is because the behavior of
such modes may also be governed by KdV equations.
However, one of the features of internal waves which dis-
tinguish them from surface waves is that there is an infinite
set of modes and the interaction between different modes
makes the interaction of internal waves more complicated
than that of surface waves.
[38] Fortunately, according to Liu and Hsu [1998], almost

all of the nonlinear internal waves observed in nature are
Mode-1 depression waves. It is plausible (but unproven) that
the interaction of internal solitary waves of the same mode
can be treated like the surface solitary waves interactions
[Grimshaw and Zhu, 1994]. The dependence of phase shift
on the interaction angle and wave amplitudes is generally
similar for both surface and internal waves, although slight
differences have been reported in numerical studies [Lynett
and Liu, 1998].
[39] In cases where a thin stratified layer appears above an

infinitely deep lower layer, the internal waves are “long”
only with respect to the depth of the stratified layer. These
kinds of waves are described by the deep water Benjamin-
Ono (BO) equation [Benjamin, 1966; Ono, 1975].
[40] Deep water solitons have novel characteristics com-

pared to those in shallow water systems. For example, the
BO solitons have a profile expressed in terms of algebraic
functions, while KdV solutions are expressed by hyperbolic
functions. The differing functions may suggest that the
oblique interactions of shallow water waves and deep
water waves differ fundamentally. However, according to
Grimshaw and Zhu [1994], in either a shallow water (KdV)
interaction or a deep water interaction, the only effect of
interaction on the two interacting waves is a phase shift.
Other investigations [Matsuno, 1998; Oikawa, 1984;
Grimshaw and Zhu, 1994] have studied wave-wave inter-
actions in deep water systems and although there are dif-
ferences the general behavior is similar to KdV wave
interactions. For head-on collisions of two BO solitons, it
was shown analytically that the amplitudes of solitary
waves did not change after interaction while both of the two
waves were shifted backwards in phase. Also, at an inter-
action angle of 120�, both interacting waves in shallow
water and deep water systems do not experience any phase
shift. Therefore, the interactions between deep water soli-
tary waves and between shallow water solitary waves have
some resemblance.
[41] Tsuji and Oikawa [2001] numerically studied the

oblique interactions of internal solitary waves in a deep two-
layer fluid. Their wave amplitudes (nondimensionalized by
the shallow layer depth) are as high as hi′ = 3. They found
that Mach interaction did occur for small interaction angles
(y < 118�). For interaction angles near y = 106�, maximum
Mach stem amplitudes were generated. The critical angle is
much smaller than that predicted using Miles’ theory (mis-
applied at this large amplitude). The maximum Mach stem
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amplitude exceeded the values for predicted shallow water
waves.
[42] In summary, oblique interactions of solitons can be

classified into a number of different categories. Of particular
interest are the fundamentally unsteady Mach stem solu-
tions, which occur for a restricted set of interaction angles
and wave amplitudes. This is because Mach stems, involv-
ing the transfer of energy between different waves, evolve
and can generate larger amplitude solitary waves. However,
a very small number of experiments (mostly numerical)
suggest that analytical formulas developed to describe the
critical angles for Mach interactions (equation (1)) are not
very accurate for waves of realistic amplitudes. In addition,
it is only plausible (but not proven) that internal waves of a
given mode can interact without losing energy to other
modes, and that the oblique interactions of deep water soli-
tons and shallow water solitons are qualitatively similar.
Geophysical observations are badly needed to determine
whether these results are realistic for the natural world.

3. Methods

3.1. Site

[43] Observations of internal wave interactions were made
in the Strait of Georgia, British Columbia. The Strait of
Georgia is a large marine waterway on the west coast of
North America (Figure 3). It is partially enclosed by islands

with Vancouver Island forming the western boundary, and a
complex of small islands and channels marking its southern
boundary. The Strait of Georgia is about 220 km long and
33 km wide with an average depth of 150 m, but with a small
fraction of the total area exceeding 350 m in depth. Depths
in the regions observed in this study are greater than 120 m.
[44] Stratification is typical for fjord-type estuaries, with a

large density gradient near the surface, little or no uniform
mixed layer, and relatively weak stratification at depth
[Pawlowicz et al., 2007]. The main source of freshwater
maintaining this stratification is the Fraser River. This river
discharges near the main entrance of the Strait of Georgia
and its turbid plume dominates the southern strait especially
in late spring and early summer [Halverson and Pawlowicz,
2008]. However, our observations were generally taken
away from the direct influence of the plume.
[45] In the southern Strait of Georgia large internal wave

“slicks” are regularly observed [Shand, 1953; Turner, 1973;
LeBlond and Mysak, 1978; Hughes and Gower, 1983]. This
visibility is enhanced by the relatively calm and sunny
conditions that often occur for periods of several days within
the strait during summer, separated by short periods of more
windy conditions in which the internal wave surface features
cannot be reliably viewed. Thus, the Strait of Georgia is a
useful natural laboratory for studying internal waves using
optical techniques.

Figure 3. Map of the southern Strait of Georgia. The intensive field work for this paper research is
carried out mostly in the region between Active Pass and Point Roberts.
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[46] Many observed internal waves in the Strait of Georgia
are concentrated near the surface, with maximum depres-
sions of up to 7 m for isopycnals whose undisturbed depth,
within the gradient between the surface brackish water and
deep saline seawater, is less than 5 m. These internal waves
are often found to be far apart and can be treated as solitary
waves [Wang and Pawlowicz, 2011]. The length scale across
the wave crest is of order 50 m, and the wave crests them-
selves can sometimes stretch for 10–20 km across the strait.
It is this near-surface location that results in large near-
surface currents, which, in turn, creates areas of enhanced or
reduced roughness, regularly visible to the naked eye. These
internal waves often appear in packets, with largest ampli-
tude waves in front, followed by successively smaller waves.
The measured phase speeds of these waves range from about
0.6 to 1.2 m s�1 [Wang and Pawlowicz, 2011].
[47] The tide has a maximum range exceeding 4 m in

the Strait of Georgia. Although tidal currents can be greater
than 1 m s�1 in some of the constricted southern passages
(in which the internal waves are formed), they are generally
no more than a few 10s of cm s�1 within the strait itself
[Foreman et al., 1995]. Thus measured internal wave
propagation speeds relative to the geostationary frame of
reference should be corrected for tides, but the correction is
not large.

3.2. Observational Technique

[48] In order to study the oblique interaction of two soli-
tary-like internal waves it is desirable to measure the speed
and amplitude of both waves, as well as the spatially and
temporally-varying structure near the interaction point. In
previous papers, we have described an observational

technique that was used to measure the phase speed and
internal structure of single waves over a period of about an
hour in the Strait of Georgia [Pawlowicz, 2003; Wang and
Pawlowicz, 2011]. Here, the technique is adapted to mea-
sure the interaction of two individual wave crests in the
region of observation.
[49] The spatial structure of the waves is obtained by

photogrammetrically rectifying oblique digital photographic
images obtained from an aircraft circling at an altitude of
about 400 m. These images (e.g., Figure 4) are obtained at
intervals of roughly every1 or 2 minutes for a period of
between 30 minutes and an hour. Rectification (e.g.,
Figure 5) requires accurate estimates of camera location and
orientation. Details of photogrammetric rectification of
photo images can be found in Wang and Pawlowicz [2011].
Although location is relatively simple to determine using
GPS logging, camera orientation was measured using a
compass/tilt-meter that was affected by the accelerations
occurring when aircraft orientation was changing rapidly,
and hence not all photos can be used. In addition, the surface
reflectance also varies with the horizontal viewing angle.
Often images from only part of the track are useful. How-
ever, phase speeds were measured to an accuracy of about
10% [Wang and Pawlowicz, 2011], and wave locations to an
absolute accuracy of less than 100 m.
[50] Water column information was provided by deploy-

ing equipment from a hovercraft that could be rapidly
directed to an interaction region by radio command from the
aircraft once a wave interaction was located. Measurements
obtained using the hovercraft included CTD (Conductivity-
Temperature-Depth) profiles (Figure 6), ADCP (Acoustic
Doppler Current Profiler) current profiles, echo sounding of

Figure 4. A sample of the original photo images taken on June 26 (interaction Case A). On the image is
an oblique top view of two internal wave packets interacting obliquely. A third packet resulting from the
interaction is also visible. Slicks are spaced about 200 m apart. The red dot at the center left is the
hovercraft.
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small density interfaces embedded in the thermocline, and
thermistor string (T-chain) measurements for high-spatial
resolution views of the wave structure.
[51] Angles between wave normals and the wave ampli-

tudes are required in order to study oblique interactions.
Angles between waves are measured on the processed
images bearing the appropriate interaction pattern. The wave
amplitudes are provided by the water column data [Wang
and Pawlowicz, 2011]. For certain waves water column
data are not available. In these cases estimates of wave
amplitudes are obtained based on the measurements of
propagation speeds, which are made by analyzing the image
sequences and subtracting tidal effects, as in Wang and
Pawlowicz [2011].

4. Results

[52] Observations were obtained during “day trips” in 2001
and 2002, occurring every week or so through the summer in
2002. Interaction patterns were observed on 4 occasions
(June 10, 25, 26, and July 15 of 2002). Largest density
changes are confined to the upper 20 m. Densities decrease
rapidly in the upper 5 m (Figure 6).

4.1. Case A

[53] A wave-wave interaction (Figures 4 and 5) was
observed near Point Roberts on June 26 and will be studied
first in detail as an example. Subsequent cases will be dis-
cussed more briefly.
[54] Photo images taken between 15:20 and 15:50 bearing

the same interaction pattern (Figure 5) are used. The three
wave packets are named by their geographical positions as
the western packet, the eastern packet, and the merged
packet. As shown in Figure 5, the western packet stands for
the wave packet on the western side (left side) of the three
wave packet pattern, and its wavefront is then called the
“western front”. The eastern packet stands for the wave
packet on the eastern side (right side) and its wavefront is
called the “eastern front”. The wave packet generated due to
the interaction of the western and eastern packets is located
in the middle of the two interacting wave packets and is
called the merged packet. Its leading wave is named as the
“merged front”. The western packet is composed of at least
three visible waves, although surface expressions are much
more visible after the interactions. The eastern packet has
two visible waves. The wave labeled as “2nd eastern wave”
is the second wave in the eastern packet.

Figure 5. A rectified and processed version of the image in Figure 4 (Case A). This image was taken
when the aircraft was to the southwest of the observed waves. In the image, there are three wave packets.
The dashed box shows the area covered by the schematic of Figure 7.
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[55] Figure 7 is a schematic redrawn of the wave crests in
Figure 5 in order to better analyze the wave-wave interac-
tion. The western front travels to the northwest in the
direction of 60� to the north from west (tidal effects sub-
tracted). The eastern front propagates to the southwest with
an angle of 23� south of west. The merged front due to the
interaction is traveling to the west and has an angle of 4� to
the north of west. The interaction angle between the western
front and the eastern front is therefore 83�. The angles
between the leading front of the eastern and the western
packets and the merged front are measured as 28� and 55�,
respectively. The angle between the post-interaction eastern
front and the merged front is 40�. The angle between the
post-interaction western front and the merged front is not
easy to identify because it has also interacted with the
second wave of the eastern wave packet, but appears to be
approximately (50 � 20)�. Wave crests after interaction
are not parallel to their original positions. The post-inter-
action eastern front was rotated 12� counter-clockwise.
The post-interaction western front was rotated in the range
of [�25� 15�] clockwise.
[56] There are only two waves visible in the eastern packet

of this image. The second wave has larger amplitude (3.8 �
0.3 m) than the leading wave (2.3 � 0.1 m). Thus it will
eventually overtake the leading wave, but over the time
period of our observations the collision does not occur.
Since we are looking at the interaction over a period of about
30 minutes, it is not unreasonable to assume that the post-

interaction western front is affected mainly by interaction
between the western packet and the larger wave of the
eastern packet. The amplitude of the post-interaction western
front is 3.3 � 0.3 m. Since the measured phase speed of the
western front and the post-interaction western front are
similar (≈0.5 � 0.1 m s�1), it is assumed that the amplitude
of the western front is also approximately 3.3 � 0.3 m.

4.2. Case B

[57] On July 15 an interaction similar to Case A was
observed close to Point Roberts between a northward prop-
agating wave packet and a westward propagating wave
packet (Figure 8). The packet on the right-hand or northeast
side is called the eastern wave packet while the other packet
on the left or southwest is called the western wave packet.
Similar to Case A, as shown in Figure 8, waves are named as
“western front”, “eastern front”, “merged front”, “post-
interaction western front”, and “post-interaction eastern
front”. A phase diagram (Figure 9) was created based on the
image in Figure 8. The western front was propagating to the
north with an angle of 80� from the east. The eastern front
was propagating to the southwest and had an angle of 6�
from the west. The merged front was propagating to the
northwest with an angle of 35� from the west. The interac-
tion angle between the two wave normals of the western and
eastern fronts is y = 98�. The angle between the western
front and the merged front is 60�, the angle between the
eastern front and the merged front is 37�, the angle between
the post-interaction eastern front and the merged front is 42�,
the angle between the post-interaction western front and theFigure 6. Density profiles for the studied cases. Only the

top 70 m are shown.

Figure 7. A cartoon of the interacting wavefronts and their
individual propagation direction for the interaction Case A
observed on June 26. The western front and the eastern front
interact and a third wave, the merged front, is generated
between them. The merged front travels in between the prop-
agation directions of the two interacting waves.
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merged front is 66�. The post-interaction eastern front is
rotated 5� relative to eastern front and the post-interaction
western front is rotated 6� relative to the western front.
[58] The amplitude of the eastern wavefront is 4 � 0.4 m

and the amplitude of the western wavefront is 3.8 � 0.4 m.
The amplitude of the post-interaction western front is mea-
sured with water column data as 3.2 � 0.2 m. The amplitude
of the post-interaction eastern front was not directly mea-
sured and its phase speed can not be easily estimated
because of difficulties in identifying it in a time sequence of
the available photo images.

4.3. Case C

[59] On June 25 an interaction pattern that resembles
Case A and Case B but without any merged front seen was
also observed near Point Roberts. The interaction is between
a western propagating packet and a northwestern propagat-
ing wave packet (Figure 10). The hovercraft sampled
the second wave of the eastern wave packet instead of the
leading front. Hence, this case study will be about the
interaction between the western front and the second wave
of the eastern packet, the “eastern wave”. The interaction
angle between the two wave normals is y = 60�. The
observed wave amplitudes are especially large. The eastern
wave has an amplitude of 4.6 � 0.4 m and the western
wavefront has an amplitude of 6 � 0.3 m.

Figure 8. Image of the interaction pattern Case B observed on July 15. This image was taken from the
northeast. There are three wave packets observed.

Figure 9. The diagram of wave-wave interaction Case B
on July 15 based on Figure 8. The western front and the
eastern front interact and a third wave, the merged front, is
generated between them. The merged front travels in between
the propagation directions of the two interacting waves.
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4.4. Case D

[60] Although the previous cases have shown interactions
at relatively large angles, the interactions at shallow angles,
especially when wave amplitudes differ (case 2 in Figure 1),
are interesting because they are very similar to the well-
known 1-D interactions. One aspect of 1-D interactions is
that the two wave crests may seemingly never merge.
Instead the surface height field has the appearance of one
crest “pushing away” the other. On June 10, this kind of
pattern (Figure 12) was observed.
[61] Our water column data suggests the two waves have a

length scale of about 150 m and the distance between two
troughs of the same wave is about 260 m. The closest
approach of the crests is about 160 m which would suggest
some interaction is occurring. This appears to be an oblique
wave-wave interaction with a very small interaction angle
(case 2 in Figure 1). The interaction angle between the two
wave normals is y = 10�. A cartoon of this interaction is
shown in Figure 13. The waves are named as the first wave,
second wave, post-interaction first wave, and post-interaction
second wave.
[62] The water column data can only provide the ampli-

tudes of the post-interaction second wave (3 � 0.2 m) and
the first wave (2.9 � 0.3 m). Assuming that the second wave
does not experience significant modifications to its wave
properties, especially amplitude, during this interaction this
value is used for the pre-interaction second wave as well.

5. Analysis and Discussion

[63] Interaction patterns that include a “bar” between the
two waves (case 3 or 4 in Figure 1) were observed on both
June 26 (Case A) and July 15 (Case B). On June 25, the

observed interaction (Case C) falls into the parameter range
of Mach interaction (case 3 in Figure 1), but there is no
Mach stem observed. On June 10 (Case D), the observed
interaction pattern resembles case 2 of Figure 1, with a very

Figure 10. The interaction pattern Case C on June 25.

Figure 11. Interaction diagram of interaction Case C
generated based on Figure 10. The western front and the
eastern wave interact with an interaction angle of 60�.
Instead of a Mach stem between two interacting waves, there
is a runup generated behind the joining point of them.
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shallow interaction angle and relatively large amplitude
difference. One wave suffered a negative phase shift, another
wave experienced a positive phase shift, and the total phase
was conserved.
[64] Note that the internal solitary-like waves observed in

the Strait of Georgia are not “small amplitude”, because the
wave displacements are of the same order as the effective
depth. However, the waves are far from having maximal
amplitude [Wang, 2009]. These waves are not shallow water
waves, because their length scales are short relative to the
depth of the deep water below the pycnocline, and back-
ground shear is present. However, in Wang and Pawlowicz
[2011], it was shown that there was little difference in the
propagation speeds predicted by weakly nonlinear and
maximal amplitude theories for these waves and it is possi-
ble the same is true for interactions. Therefore, it is reason-
able to begin a comparison using existing theory.
[65] In this section, the observed interactions are first

qualitatively classified according to the cases in Figure 1 and
then more detailed comparisons withMiles [1977] theory for
Mach interactions are made. The measured values including
wave amplitudes and the angles between waves will allow
for quantitative comparison. The amplitudes must be non-
dimensionalized and this is done by dividing the amplitudes
by heff. For simplicity we take this to be the depth of the
maximum value of Buoyancy frequency, which is obtained
based on the observed continuous stratification. In our situ-
ation, heff is found to lie in the range of [2 4] m.

5.1. Analysis of Observed Interactions

5.1.1. Case A
[66] For Case A observed on June 26, h1 = 3.3 m (western

front), h2 = 3.8 m (eastern wave), and y = 1.4 (i.e. 83�). Thus

Figure 12. Image of wave-wave interaction Case D on June 10. Second wave propagates faster than first
wave. After interaction, second wave jumps forward, while first wave shifted backward.

Figure 13. Diagram of wave-wave interaction Case D on
June 10.
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by dividing the effective depth heff ([2 4] m) the nondimen-
sional wave amplitudes are obtained in the range of h1′ = [0.8
1.6] and h2′ = [0.9 1.9]. The amplitudes nondimensionalized
by h1 = 4 m are highlighted with bold text.
[67] First, the interaction can be viewed as a reflection (i.e.

a symmetric interaction) since |h2′ � h1′ | < y2 is satisfied,
although in fact it is not quite geometrically symmetric. The
eastern front has larger amplitude than the western front and
experiences a smaller phase shift, while the western front
with smaller amplitude suffers a larger phase shift, resulting
in the observed asymmetry. This agrees with the line draw-
ing on the right side of Figure 1.
[68] Second, since |h2′ � h1′ | < y2 the interaction is not

predicted to be phase-conserving and this agrees with the
observed forward phase shift of both interacting waves as we
can see from Figures 5 and 7.
[69] Third, y

2

� �2 ¼ O h′1;2
� �

is satisfied suggesting it is a
strong interaction, and this can be confirmed by the magni-
tude of the large spatial shifts in wave crests caused by the
interaction. As shown in Figure 5, the displacements in the
direction of wave propagation between the post-interaction
western front and the western front, and between the post-
interaction eastern front and the eastern front are around
100–200 m, comparable to horizontal wave scales. Also, as
will be shown later, this interaction lasts for a quite long time
(over one hour) while the timescale of the particles moved
by the waves is only several minutes.
[70] Fourth, a regular interaction is predicted to become a

Mach interaction when y� < sin2 y
2 < yþ and y� ¼

3
4

ffiffiffiffiffi
h′1

p � ffiffiffiffiffi
h′2

pð Þ2, i.e. when equation (1) is satisfied. Here,

y = 1.4, sin2 y
2 ¼ 0:4, y� = [0.003 0.006], and y+ = [2.6 5.3],

so it is well within the theoretical Mach interaction regime.
The crest length of the merged front is observed to grow
slowly with time with a step angle of (3.3 � 2.5)�. Since the
stem length increases with time and this is one unique char-
acteristic of a Mach interaction differing from a regular
interaction, this observed case is most probably a Mach
interaction. However, it is also possible that this growth rate
occurs as a transient related to the finite length of the crest
of real waves. We do not have any further data to address
this issue.
[71] Since there are no direct measurements of the wave

amplitudes for Mach stem and the post-interaction waves,
these are estimated from wave phase speed observations and
the amplitude measurements of other waves using a heuristic
rule that a larger amplitude wave has faster wave speed than
a smaller wave under the same conditions. The observed
wave speed of the Mach stem (0.77 � 0.1 m s�1) is larger
than any of the other waves (0.52 � 0.08 m s�1 and 0.55 �
0.05 m s�1 for the western front and the eastern front,
respectively), therefore, the estimated amplitude for the
Mach stem is larger than 3.3 � 0.3 m but less than double
this value.
[72] The apparent origination time of the Mach stem can

also be estimated by extrapolating backwards in time from
the measured growth rate and the present size of the stem.
The apparent origination time is found to be around 14:20 or
about one hour before our observations. Therefore, we infer
that the time length for the full development of the Mach
interaction is longer than one hour. This is much longer than

the timescale (wavelength/wave speed) of particles in the
observed waves which is several minutes. The observed long
maturing time also agrees with Funakoshi [1980, 1981] who
suggested that Mach reflection is a much slower process
than a regular reflection, and that it generally takes a long
time for the asymptotic situation to be achieved.
5.1.2. Case B
[73] For Case B observed on July 15, the dimensionless

amplitudes are h1′ = [0.95 1.9] (western front) and h2′ = [1 2]
(eastern front). The interaction angle between two wave
normals is y = 1.71 (98�).
[74] First, |h2′ � h1′ | < y2 is satisfied and this suggests that

this interaction can be treated as a symmetric interaction
(reflection). Again it is not exactly symmetric, even though
the amplitudes are similar enough that it can be treated as a
reflection. The asymmetry is caused by the difference
between the interacting wave amplitudes.
[75] Second, the interaction angle y satisfies sin2 y=2ð Þ ¼

0:57 , which is less than O(h1,2′ ), suggesting it is a strong
interaction.
[76] Third, |h2′ � h1′ | < y2, also suggesting that this inter-

action is not phase-conserving. This agrees with the
observed forward phase shifts of both of the two interacting
waves near the interaction as shown in Figures 8 and 9.
[77] Fourth, again it is easy to find that for this interaction

case equation (1) is satisfied. Since this case is a reflection
problem it can also be examined as a reflection using
equation (3). The eastern wavefront with greater amplitude
is taken as the incident wave and the post-interaction west-
ern front as the reflected wave. The incident angle is half of
the interaction angle, which is yi ¼ y

2 ¼ 49� (≈0.86) and
the incident amplitude is hi = 4 m (hi = [1 2]). It is found
that yi/(3hi′)

1/2 ≤ 1, i.e. it is a Mach reflection.
[78] The speed of the Mach stem is again greater than the

speed of the western and the eastern front. Therefore, the
Mach stem’s amplitude must be larger than the western and
the eastern wavefront, i.e. greater than 4 m. The Mach stem
step angle is estimated to be 10� � 5�. The non-zero step
caused by the growth of stem length again suggests that this
is a Mach interaction. This Mach interaction began around
15:15 about one hour before it was observed. Similar to
Case A, this long interaction time (greater than wave time-
scale) and the spatial displacements between pre- and post-
interaction waves (greater than wavelength scale) again
indicate the strong interaction nature of this case.
5.1.3. Case C
[79] As shown in Figure 11 for the interaction pattern

observed on June 25 (Figure 10), the interaction angle
between the two wave normals is y = 1.05 (60�). The
dimensionless amplitudes are h1′ = [1.1 2.3] and h2′ = [1.5 3].
First, |h2′ � h1′ | < y2 implying that this case can be treated
approximately as a reflection problem. Second, the satis-
faction of this criterion also means that for this interaction
the phase is not conserved. Third, it is a strong interaction
since y2 = O(h′). Fourth, we also have 3

4

ffiffiffiffiffi
h′2

p � ffiffiffiffiffi
h′1

pð Þ2 <
sin2 y=2ð Þ < 3

4

ffiffiffiffiffi
h′2

p þ ffiffiffiffiffi
h′1

pð Þ2, so it is possible that this case
is a Mach interaction problem. However, no Mach stem is
observed, so the interaction pattern as shown in Figure 10
does not resemble a Mach interaction.
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5.1.4. Case D
[80] From the schematic of this interaction (Figure 13),

the interaction angle between the two wave normals is
y = 0.18 (10�). The nondimensional wave amplitudes are
h1′ = [0.73 1.45] for the first wave and h2′ = [0.75 1.5] for the
second wave. The observed values are again applied to the
classification criteria and it is found that this interaction is
not symmetric, it is a strong interaction, phase is conserved,
and it is not a Mach interaction. This is case 2 in Figure 1
with the second wave obliquely overtaking the first wave.
The first wave is shifted backward while the second wave
shifted forward, so the total phase is conserved.

5.2. Discussion on Cases in Mach Interaction
Parameter Range

[81] The interactions observed on June 26 (Case A), July
15 (Case B), and June 25 (Case C) are re-examined and
compared with the available theory of Miles [1977] more
quantitatively because although these wave cases fall in the
parameter domain of Mach interaction their appearances
differ in some respects from a Mach interaction.
[82] If case A treated as aMach reflection, the incident angle

isyi = 0.7 (42�), and the nondimensional incident amplitude is
hi′ = [0.9 1.9]. The reflected angle (half of the angle between
the wave normals of the two post-interaction waves) is

approximately yr ¼ 0:8� 0:17 i:e: 50�20ð Þ�þ40�
2 ¼ 45� 10ð Þ�

� �
.

Due to the uncertainty of the angle between the post-interaction
western front and the Mach stem, there is an error of the
value of the reflected angle yr as well. Using these values
we compute various parameters for both regular and Mach
reflection cases, and compare them with observations (see
the first three columns of Table 1). The computation of the
parameters in Table 1 are based on the formulas summa-
rized in section 2. Observations of these parameters are in
the last column of Table 1.
[83] The comparison of the interaction as shown in

Table 1 does not match either regular or Mach reflection

predictions, but the differences are consistent with those
described by Tanaka [1993] for larger amplitude waves and
can be summarized as follows:
[84] 1. The observed Mach stem step angle is significantly

greater than zero and it is smaller than the theoretical value
of a Mach reflection case.
[85] 2. The observed Mach stem amplitude is smaller

than the runup in a regular reflection case and closer to the
theoretical Mach stem amplitude.
[86] 3. The observed reflected wave amplitude lies between

the theoretical values of regular and Mach reflections.
[87] 4. The observed reflection angle appears to be smaller

than its value if treated as a theoretical Mach interaction and
greater than the theoretical regular reflection although there
is an uncertainty associated with estimating the reflection
angle yr.
[88] Overall, the observed reflection characteristics for the

observed large amplitude waves deviate from those of the
theoretical small amplitude Mach reflection toward those of
the theoretical regular reflection. The degree of agreement
depends somewhat on the heff used in nondimensionaliza-
tion. The weaker the nonlinearity i.e. the deeper the depth of
heff (highlighted as bold characters), the closer the results to
the theoretical values of weakly nonlinear Mach reflection.
The stronger the nonlinearity (decreasing heff), the closer
the results are to those of a regular reflection. We hypoth-
esize that the above deviations from the weakly nonlinear
Mach reflection are caused by the strong nonlinearity i.e.
the large nondimensionalized amplitudes of the waves
involved. Although this case has stronger nonlinearity (h′ ≈ 1)
than Tanaka’s [Tanaka, 1993] numerical model, where
h′ = [0.1 0.3], our results agree with his numerical results
stating that the effect of large amplitude tends to prevent the
Mach reflection from occurring. Even when a Mach reflection
occurs, it is “contaminated” by regular reflection [Tanaka,
1993].
[89] The comparison of the second presumed Mach inter-

action Case B observed on July 15 (Figure 8) with Miles

Table 1. Interaction Case A on June 26a

Parameter
ɛ ≡ y

2 =
ffiffiffiffiffiffiffi
3h′i

p
Theory Observation

ɛ ≥ 1 Regular Reflection
(Small Amplitude)

ɛ < 1 Mach Reflection
(Small Amplitude)

ɛ = [0.3 0.4]
(Large Amplitude)

Step angle y* 0
ffiffiffiffiffiffiffi
1
3 h′i

q
(1 � �) ([19 32]�) 4� � 2.5�

Interaction amp. hM non-grazing (maximum runup) ([13 18] m) (1 + ɛ)2hi (Mach stem)([6.4 7.4] m) >3.8 m (based on wave speed observations)
Reflected wave amp. hr hi (3.8 m) ɛ2hi ([0.33 0.66] m) ≈3.3 m

Reflection angle yr yi (42�)
ffiffiffiffiffiffiffi
3h′i

p
([97 137]�) (45 � 10)�

aSee text for explanation of the bold values in Tables 1–3.

Table 2. Interaction Case B on July 15

Parameter
ɛ ≡ yi=

ffiffiffiffiffiffiffi
3h′i

p
Theory Observation

ɛ ≥ 1 Regular Reflection
(Small Amplitude)

ɛ < 1 Mach Reflection
(Small Amplitude)

ɛ = [0.35 0.5]
(Large Amplitude)

Step angle y* 0
ffiffiffiffiffiffiffi
1
3 h′i

q
(1 � ɛ) ([17 30]�) 10� � 5�

Interaction amp. hM non-grazing (maximum runup) ([11 14] m) (1 + ɛ)2hi (Mach stem)([7 9] m) >4 m (based on wave speed observations)
Reflected wave amp. hr hi (4 m) ɛ2hi ([0.5 1] m) 3.2 m

Reflection angle yr yi (49�)
ffiffiffiffiffiffiffi
3h′i

p
([99 140]�) 54�
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[1977] is very similar to the case on June 26 as we can see
from Table 2. This Mach reflection is also contaminated by
regular reflection because of the strong nonlinearity of the
interacting waves. The observed Mach stem step angle, the
reflected wave amplitude, and the reflection angle are all
smaller than the theoretical values of a pure Mach reflection.
[90] We can also compare our observations with the

numerical experiments of Tsuji and Oikawa [2001] who
numerically studied some cases of deep water internal wave
interactions. Their main results are summarized as: with
incident wave amplitude hi′ = 2 (nondimensionalized by
the thinner layer depth), the critical angle for Mach reflection
is yc = 59�, i.e. it is Mach reflection if the incident angle
yi < 59� (for the weakly nonlinear theory this critical angle
occurs when hi′ = yi

2/3 ≈ 0.3) and the maximum stem
amplitude occurs when yi ≈ yc, i.e. close to the critical
angle. The incident angles of Case A and Case B are both
smaller than the critical angle of 59� found by Tsuji and
Oikawa [2001] for hi′ = 2, therefore, this suggests that the
observed interaction could still qualify to be a Mach inter-
action under the circumstance of strongly nonlinear and
deep water waves. At our observed amplitude of hi′ ≈ 1 the
measured incident angles of 42� (Case A) and 49� (Case B)
must be close to critical.
[91] The observed asymmetry in angles between the stem

and the two original waves (Figure 7) is caused by the dif-
ferences in amplitude between the two interacting waves.
According to the analytical results of Matsuno [1998]
studying oblique interaction in a deep-fluid system, to
leading order the phase shift does not depend on the ampli-
tude, but in the second order it is proportional to the ampli-
tude of the other wave. For our large wave amplitudes, the
second order is important and can not be neglected. There-
fore, it might be expected that the phase shift of the smaller
wave (western front) is greater than the larger wave (eastern
wave). Our observations showed that not only do the dis-
tances between the post-interaction and the original waves
depend on each other’s wave amplitudes, the direction
rotations due to a Mach interaction are also related to the
other wave’s amplitude. The larger wave (eastern wave) is
rotated a smaller angle than the smaller wave (western front).
Due to the combination of the asymmetric phase shifts and
direction rotations, the Mach stem is inclined to the direction
of the larger wave and causes the observed asymmetry.
[92] Although there is no Mach stem observed, Case C

(Figure 10) is also studied as a reflection problem. The western
front with the greater amplitude is taken to be the incident
wave. The post-interaction eastern wave is the reflected wave.
The incident wave amplitude is h2′ and the reflected wave
amplitude is h1′. The incident angle is half the interaction

angle, yi = 30�, and the reflection angle is yr = 35�. The
asymmetry is again caused by the different wave amplitudes
of the interacting waves. The comparison results are shown
in Table 3. Surprisingly, the comparison is not dramatically
different from comparisons we did for Case A and Case B
even though the interaction pattern seems much different.
However, recall that the theoretical values for either regular
or Mach reflection are meant to work only for waves with
very small wave amplitudes. The comparison with Miles’
small amplitude theory can only tell us that our observations
of large waves lie somewhere in between regular reflection
and Mach reflection despite its appearance of a regular
reflection or Mach reflection. With yi < yc (¼

ffiffiffiffiffiffiffi
3h′i

p
) satis-

fied, this case is inside of the Mach reflection regime of
Miles. However, recalling the definition of Mach stem, “the
apex of the incident and the reflected waves moves away
from the wall at a constant angle (stem angle) and is joined
to the wall by a solitary wave called Mach stem” [Tanaka,
1993], there is no Mach stem observed in this case. We are
not alone with this finding. In Tanaka [1993], a numerical
experiment was carried out for hi = 0.3 and yi = 40�, and it
was found that the stem length did not grow and hr = hi,
which indicated that it was actually a regular reflection rather

Table 3. Interaction Case C on June 25

Parameter
ɛ ≡ yi=

ffiffiffiffiffiffiffi
3h′i

p
Theory Observation

ɛ ≥ 1 Regular Reflection
(Small Amplitude)

ɛ < 1 Mach Reflection
(Small Amplitude)

ɛ = [0.35 0.5]
(Large Amplitude)

Step angle y* 0
ffiffiffiffiffiffiffi
1
3 h′i

q
(1 � ɛ) ([21 37]�) 0

Interaction amp. hM non-grazing (maximum runup) ([43 75]m) (1 + ɛ)2hi (Mach stem)([11 13]m) not available
Reflected wave amp. hr hi (6 m) ɛ2hi ([0.7 1.5]m) not available

Reflection angle yr yi (30�)
ffiffiffiffiffiffiffi
3h′i

p
([122 172]�) 35�

Figure 14. The interaction pattern on June 25 can also be
viewed as case 2 of Figure 1. The western front and the
eastern wave interact. After interaction, the western front is
shifted forward and the eastern wave is shifted backward.
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than a Mach reflection even though yi=
ffiffiffiffiffiffiffi
3h′i

p ¼ 0:736 < 1.
Therefore, even when the above condition of Miles is satis-
fied, when the wave amplitudes are large enough, a Mach
interaction may not occur. Correct predictions in large
amplitude cases clearly require a more sophisticated theory.
[93] A second possibility is that the wave magnitudes and/

or the difference in wave amplitudes may be large enough
that the above Miles’ criteria of phase conserving, reflection,
and Mach interaction are not applicable any more. There-
fore, we may be seeing case 2 (obliquely overtaking) of
Figure 1. That is, it is fundamentally a shallow-angle inter-
action with one wave (western front) shifted forward and the
other wave (eastern wave) shifted backward as illustrated in
Figure 14.
[94] One caveat associated with all of these analyses

concerns the issues of refraction or steering by horizontal
gradients in background currents and densities. We have
assumed that these background density and current fields are
approximately constant over horizontal scales of several
hundred meters. This seems reasonable since rapid changes
over those scales would likely also result in some kind of
surface expression which we did not observe in the rectified
images. However, further analysis of the lateral curvature of
waves over strait-wide scales [Wang, 2009] does suggests
that refraction and steering effects may play a role in
understanding the ultimate positions of these waves after
long time periods and over large distances.

6. Conclusion

[95] A number of instances in which strongly nonlinear
internal waves interact nonlinearly were measured and ana-
lyzed. Although far from being comprehensive, these
observations represent the first field measurements of such
interactions. Overall, it is found that although the behavior
described by a weakly nonlinear analysis (section 2) is
qualitatively correct, a detailed comparison shows signifi-
cant deviations. In particular, when Mach interactions occur,
the growth and amplitude of the Mach stem is somewhat less
than predicted.
[96] On the other hand, at this level of comparison it is not

clear what (if any) difference may be expected between the
interactions of shallow water waves as described by KdV-
type equations and the interaction of deep water waves
described by BO-type equations. Our findings on the lim-
itations of Miles’ theory [Miles, 1977] are at least consistent
with those of Tanaka [1993]. Other sources of the discrep-
ancy might also be the strongly nonlinear nature of the
interaction. In addition, anecdotal observations of surface
wave interactions that are similar to Mach interactions often
show breaking in the Mach stem. If enhanced mixing is
occurring within these internal wave interactions, then the
result could act as a significant sink of energy in the prop-
agation of wave packets. Unfortunately we did not manage
to make water column measurements actually in the Mach
stem to verify this hypothesis.
[97] In future research on Mach interaction, an effort

should be made to track the Mach stem for a longer time, at
least several hours, as well as water column measurements
within the stem. Measurements over longer timescales may
provide a better idea of the process of Mach stem interaction

as it reaches its asymptotic state, or indeed if it does reach a
steady constant growth rate.
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