Différences entre versions de « Utilisateur:Arbg0002/brouillons/réseaux de neurones »
Sauter à la navigation
Sauter à la recherche
(Page créée avec « = Neural networks = ») |
|||
Ligne 1 : | Ligne 1 : | ||
= Neural networks = | = Neural networks = | ||
+ | |||
+ | == Pre-processing == | ||
+ | |||
+ | * Data exploration (clean-up) | ||
+ | * Data transformation | ||
+ | * Outlier detection and removal | ||
+ | * Data normalization, one of: | ||
+ | ** Min-Max Normalization, min-max normalization is a linear scaling algorithm. It transforms the original input range into a new data range (typically 0-1). | ||
+ | ** Zscore Normalization, in Zscore normalization, the input variable data is converted into zero mean and unit variance. | ||
+ | ** Sigmoidal Normalization, sigmoidal normalization is a nonlinear transformation. It transforms the input data into the range -1 to 1, using a sigmoid function | ||
+ | * Data analysis | ||
+ | * Validation of results |
Version du 12 avril 2019 à 10:00
Neural networks
Pre-processing
- Data exploration (clean-up)
- Data transformation
- Outlier detection and removal
- Data normalization, one of:
- Min-Max Normalization, min-max normalization is a linear scaling algorithm. It transforms the original input range into a new data range (typically 0-1).
- Zscore Normalization, in Zscore normalization, the input variable data is converted into zero mean and unit variance.
- Sigmoidal Normalization, sigmoidal normalization is a nonlinear transformation. It transforms the input data into the range -1 to 1, using a sigmoid function
- Data analysis
- Validation of results