Différences entre versions de « Utilisateur:Arbg0002/brouillons/réseaux de neurones »
Sauter à la navigation
Sauter à la recherche
Ligne 24 : | Ligne 24 : | ||
* multiquadratic function: <math>\,\phi(v_i)=\sqrt{\|v_i-c_i\|^2 + a^2}</math> | * multiquadratic function: <math>\,\phi(v_i)=\sqrt{\|v_i-c_i\|^2 + a^2}</math> | ||
* inverse multiquadratic function: <math>\,\phi(v_i)=(\|v_i-c_i\|^2 + a^2)^{-1/2}</math> where <math>c_i</math> is the vector representing the function "center" and <math>a</math> and <math>\sigma</math> are parameters affecting the spread of the radius | * inverse multiquadratic function: <math>\,\phi(v_i)=(\|v_i-c_i\|^2 + a^2)^{-1/2}</math> where <math>c_i</math> is the vector representing the function "center" and <math>a</math> and <math>\sigma</math> are parameters affecting the spread of the radius | ||
+ | |||
+ | == Global behavior == | ||
+ | |||
+ | ... | ||
== Example: BEAM == | == Example: BEAM == | ||
Download: [http://www.brockmann-consult.de/cms/web/beam/releases] | Download: [http://www.brockmann-consult.de/cms/web/beam/releases] |
Version du 12 avril 2019 à 10:52
Neural networks
Pre-processing
- Data exploration (clean-up)
- Data transformation
- Outlier detection and removal
- Data normalization, one of:
- Min-Max normalization: linear scaling into a data range, typically [0,1]
- Zscore normalization: input variable data is converted into zero mean and unit variance
- Sigmoidal normalization: nonlinear transformation of the input data into the range [-1,1], with a sigmoid function
- Other normalization: e.g. if a variable is exponentially distributed, take the logarithm
- Data analysis
- Validation of results
Source: [1]
Activation function
The activation function is alike <math>\phi(v_i)=U(v_i)</math>, where <math>U</math> is the Heaviside step function.
- normalizable sigmoid activation function <math>\phi(v_i)=U(v_i)\tanh(v_i)</math>, where the hyperbolic tangent function can be replaced by a sigmoid function
- gaussian function: <math>\,\phi(v_i)=\exp\left(-\frac{\|v_i-c_i\|^2}{2\sigma^2}\right)</math>
- multiquadratic function: <math>\,\phi(v_i)=\sqrt{\|v_i-c_i\|^2 + a^2}</math>
- inverse multiquadratic function: <math>\,\phi(v_i)=(\|v_i-c_i\|^2 + a^2)^{-1/2}</math> where <math>c_i</math> is the vector representing the function "center" and <math>a</math> and <math>\sigma</math> are parameters affecting the spread of the radius
Global behavior
...
Example: BEAM
Download: [2]