Utilisateur:Arbg0002/brouillons/réseaux de neurones

De POLR
Sauter à la navigation Sauter à la recherche

Neural networks

Pre-processing

  • Data exploration (clean-up)
  • Data transformation
  • Outlier detection and removal
  • Data normalization, one of:
    • Min-Max normalization: linear scaling into a data range, typically [0,1]
    • Zscore normalization: input variable data is converted into zero mean and unit variance
    • Sigmoidal normalization: nonlinear transformation of the input data into the range [-1,1], with a sigmoid function
    • Other normalization: e.g. if a variable is exponentially distributed, take the logarithm
  • Data analysis
  • Validation of results

Source: [1]

Activation function

The activation function is alike <math>\phi(v_i)=U(v_i)</math>, where <math>U</math> is the Heaviside step function.

  • normalizable sigmoid activation function <math>\phi(v_i)=U(v_i)\tanh(v_i)</math>, where the hyperbolic tangent function can be replaced by a sigmoid function
  • gaussian function: <math>\,\phi(v_i)=\exp\left(-\frac{\|v_i-c_i\|^2}{2\sigma^2}\right)</math>
  • multiquadratic function: <math>\,\phi(v_i)=\sqrt{\|v_i-c_i\|^2 + a^2}</math>
  • inverse multiquadratic function: <math>\,\phi(v_i)=(\|v_i-c_i\|^2 + a^2)^{-1/2}</math> where <math>c_i</math> is the vector representing the function "center" and <math>a</math> and <math>\sigma</math> are parameters affecting the spread of the radius

Global behavior

...

Example: BEAM

Download: [2]

Get level 1 MERIS satellite data from [3] : filename = *.N1 (Uncompress the .bz2 file!)

BEAM > Processing > Water > Meris case 2 [Run]

In SeaDAS > File > Open… *.N1_C2IOP.dim